Mixed Deciduous Forest (mixed + deciduous_forest)

Distribution by Scientific Domains


Selected Abstracts


Long-term succession in a Danish temperate deciduous forest

ECOGRAPHY, Issue 2 2005
Richard H. W. Bradshaw
Forest successional trajectories covering the last 2000 yr from a mixed deciduous forest in Denmark show a gradual shift in dominance from Tilia cordata to Fagus sylvatica and a recent increase in total forest basal area since direct management ceased in 1948. The successions are reconstructed by combining a fifty-year record of direct tree observations with local pollen diagrams from Draved Forest, Denmark. Five of the seven successions record a heathland phase of Viking Age dating from 830 AD. The anthropogenic influence is considerable throughout the period of study even though Draved contains some of the most pristine forest stands in Denmark. Anthropogenic influence including felling masks the underlying natural dynamics, with the least disturbed sites showing the smallest compositional change. Some effects of former management, such as loss of Tilia cordata dominance, are irreversible. Artificial disturbance, particularly drainage, has accelerated and amplified the shift towards Fagus dominance that would have occurred on a smaller scale and at a slower rate in the absence of human intervention. [source]


Water savings in mature deciduous forest trees under elevated CO2

GLOBAL CHANGE BIOLOGY, Issue 12 2007
SEBASTIAN LEUZINGER
Abstract Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest-trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)-sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2 -treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high-CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2 -treated trees take advantage from initial water savings. High-resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2 -treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad-leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2. [source]


The relative importance of dispersal limitation of vascular plants in secondary forest succession in Muizen Forest, Belgium

JOURNAL OF ECOLOGY, Issue 5 2001
Kris Verheyen
Abstract 1,Distribution patterns (frequency and percentage cover) of 18 forest plant species were studied in 34 ha of mixed deciduous forest (Muizen Forest, north Belgium). Stands varied in age between 6 and more than 223 years and both slow and fast colonizing species were studied. 2,Detailed land use history data were combined with the species distribution maps to identify species-specific colonization sources and calculate colonization distances. 3,A multiple logistic regression model was constructed with four covariables: pH (which can impose limits on the potential species-distribution), secondary forest age, distance from nearest colonization source and age,distance interaction, to allow us to account for the gradual completion of colonization over time. 4,We could distinguish species which are limited by both dispersal and recruitment (Primula elatior, Arum maculatum and Lamium galeobdolon), mainly by dispersal (Anemone nemorosa, Deschampsia cespitosa), mainly by recruitment (Paris quadrifolia and Polygonatum multiflorum) and by neither (Geum urbanum, Ranunculus ficaria, Glechoma hederacea, Aegopodium podagraria, Ajuga reptans, Adoxa moschatellina and Oxalis acetosella). 5,The low colonizing capacity of ancient forest plants cannot be attributed to a single cause; rather both dispersal and recruitment are limiting but the relative importance varies. [source]


Leaf age affects the seasonal pattern of photosynthetic capacityand net ecosystem exchange of carbon in a deciduous forest

PLANT CELL & ENVIRONMENT, Issue 6 2001
K. B. Wilson
Abstract Temporal trends in photosynthetic capacity are a critical factorin determining the seasonality and magnitude of ecosystem carbonfluxes. At a mixed deciduous forest in the south-eastern United States (Walker Branch Watershed, Oak Ridge, TN, USA), we independently measured seasonal trends in photosynthetic capacity (using single-leaf gas exchange techniques) and the whole-canopycarbon flux (using the eddy covariance method). Soil respiration was also measured using chambers and an eddy covariance system beneath the canopy. These independent chamber and eddy covariance measurements, along with a biophysical model (CANOAK), areused to examine how leaf age affects the seasonal pattern of carbon uptake during the growing season. When the measured seasonality in photosynthetic capacity is representedin the CANOAK simulations, there is good agreement with the eddy covariance data on the seasonal trends in carbon uptake. Removing the temporal trends in the simulations by using the early season maximum value of photosynthetic capacity over the entire growing season over estimates the annual carbon uptake by about 300 g C m,2 year,1, halfthe total estimated annual net ecosystem exchange. Alternatively, use of the mean value of photosynthetic capacity incorrectly simulates the seasonality in carbon uptake by the forest. In addition to changes related to leaf development and senescence, photosynthetic capacitydecreased in the middle and late summer, even when leaf nitrogenwas essentially constant. When only these middle and late summer reductions were neglected in the model simulations, CANOAK still overestimated the carbon uptake by an amount comparable to 25% ofthe total annual net ecosystem exchange. [source]