Mitogenic Stimuli (mitogenic + stimulus)

Distribution by Scientific Domains


Selected Abstracts


PPAR,1 synthesis and adipogenesis in C3H10T1/2 cells depends on S-phase progression, but does not require mitotic clonal expansion

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004
Young C. Cho
Abstract Adipogenesis is typically stimulated in mouse embryo fibroblast (MEF) lines by a standard hormonal combination of insulin (I), dexamethasone (D), and methylisobutylxanthine (M), administered with a fresh serum renewal. In C3H10T1/2 (10T1/2) cells, peroxisome proliferator-activated receptor ,1 (PPAR,1) expression, an early phase key adipogenic regulator, is optimal after 36 h of IDM stimulation. Although previous studies provide evidence that mitotic clonal expansion of 3T3-L1 cells is essential for adipogenesis, we show, here, that 10T1/2 cells do not require mitotic clonal expansion, but depend on cell cycle progression through S-phase to commit to adipocyte differentiation. Exclusion of two major mitogenic stimuli (DM without insulin and fresh serum renewal) from standard IDM protocol removed mitotic clonal expansion, but sustained equivalent PPAR,1 synthesis and lipogenesis. Different S-phase inhibitors (aphidicolin, hydroxyurea, l -mimosine, and roscovitin) each arrested cells in S-phase, under hormonal stimulation, and completely blocked PPAR,1 synthesis and lipogenesis. However, G2/M inhibitors effected G2/M accumulation of IDM stimulated cells and prevented mitosis, but fully sustained PPAR,1 synthesis and lipogenesis. DM stimulation with or without fresh serum renewal elevated DNA synthesis in a proportion of cells (measured by BrdU labeling) and accumulation of cell cycle progression in G2/M-phase without complete mitosis. By contrast, standard IDM treatments with fresh serum renewal caused elevated DNA synthesis and mitotic clonal expansion while achieved equivalent level of adipogenesis. At most, one-half of the 10T1/2 mixed cell population differentiated to mature adipocytes, even when clonally isolated. PPAR, was exclusively expressed in the cells that contained lipid droplets. IDM stimulated comparable PPAR,1 synthesis and lipogenesis in isolated cells at low cell density (LD) culture, but in about half of the cells and with sensitivity to G1/S, but not G2/M inhibitors. Importantly, growth arrest occurred in all differentiating cells, while continuous mitotic clonal expansion occurred in non-differentiating cells. Irrespective of confluence level, 10T1/2 cells differentiate after progression through S-phase, where adipogenic commitment induced by IDM stimulation is a prerequisite for PPAR, synthesis and subsequent adipocyte differentiation. © 2003 Wiley-Liss, Inc. [source]


Inhibition of NF-,B activation by the histone deacetylase inhibitor 4-Me2N-BAVAH induces an early G1 cell cycle arrest in primary hepatocytes

CELL PROLIFERATION, Issue 5 2007
P. Papeleu
4-Me2N-BAVAH has been shown to induce histone hyperacetylation and to inhibit proliferation in Friend erythroleukaemia cells in vitro. However, the molecular mechanisms have remained unidentified. Materials and Methods:,In this study, we evaluated the effects of 4-Me2N-BAVAH on proliferation in non-malignant cells, namely epidermal growth factor-stimulated primary rat hepatocytes. Results and Conclusion:,We have found that 4-Me2N-BAVAH inhibits HDAC activity at non-cytotoxic concentrations and prevents cells from responding to the mitogenic stimuli of epidermal growth factor. This results in an early G1 cell cycle arrest that is independent of p21 activity, but instead can be attributed to inhibition of cyclin D1 transcription through a mechanism involving inhibition of nuclear factor-kappaB activation. In addition, 4-Me2N-BAVAH delays the onset of spontaneous apoptosis in primary rat hepatocyte cultures as evidenced by down-regulation of the pro-apoptotic proteins Bid and Bax, and inhibition of caspase-3 activation. [source]


CDK2 regulation through PI3K and CDK4 is necessary for cell cycle progression of primary rat hepatocytes

CELL PROLIFERATION, Issue 4 2007
L. Wierød
In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G1 phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. Methods and results: In this study, we have explored the role of CDK4 activity during G1 progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. Conclusions: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G1 phase. [source]


Cell growth and cholesterol metabolism in human glucose- 6-phosphate dehydrogenase deficient lymphomononuclear cells

CELL PROLIFERATION, Issue 3 2002
Batetta B.
Atherosclerosis is an inflammatory-fibroproliferative response of the arterial wall involving a complex set of interconnected events where cell proliferation (lymphomonocytes, and endothelial and smooth-muscle cells) and substantial perturbations of intracellular cholesterol metabolism are considered to be among the main features. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the hexose-monophosphate shunt pathway, is an essential enzyme involved in both cell growth and cholesterol metabolism, raising the question as to whether G6PD deficiency may have metabolic and growth implications in a deficient population. In the present study, we investigated cell growth and cholesterol metabolism in peripheral blood lymphomononuclear cells (PBMC) from G6PD-normal (n = 5) and -deficient (n = 5) subjects stimulated with lectins (phytohaemoagglutinin and Concanavalin A). G6PD activity, DNA ([3H]-thymidine incorporation) cholesterol synthesis and esterification ([14C]-acetate and [14C]-oleate incorporation), and G6PD, HMGCoA reductase and low density lipoprotein (LDL) receptor mRNA levels (RT-PCR) all increased following lectin stimulation in both normal and G6PD-deficient cells. However, these parameters were significantly lower in G6PD-deficient cells (P < 0.05). It is of interest that G6PD-deficient PBMC, which showed lower expression of G6PD and higher expression of the LDL receptor gene than normal PBMC under basal conditions, exhibited an opposite pattern after stimulation: G6PD and HMGCoA reductase being expressed at significantly higher levels in deficient than in normal cells (P < 0.05). We conclude that the reduced capability of G6PD-deficient cells to respond to mitogenic stimuli and to synthesize cholesterol esters may represent favourable conditions for reducing the risk of cardiovascular diseases. [source]


Nonregenerative stimulation of hepatocyte proliferation in the rat: Variable effects in relation to spontaneous liver growth; a possible link with metabolic induction

CELL PROLIFERATION, Issue 5 2000
C. Nadal
Three procedures were used to stimulate hepatocyte proliferation in the rat without reducing liver mass, resulting in a supplementary growth which differs from the regenerative growth observed after loss of liver mass by hepatectomy or toxic necrosis. They were: (a) the ingestion of cyproterone, a cytochrome P450 inducing drug (b) the injection of an irritant which provokes glycogenesis and synthesis of acute-phase proteins (c) the injection of albumin-bound bilirubin leading to elimination of glucuronated bilirubin in bile. This ensuing supplementary growth was studied in the rat under several conditions of hepatic proliferation: 1In normal adult rats, in which hepatocyte proliferation is very low, the effect on proliferation was either weak or undetectable. 2In suckling rats, with a rapid body and liver growth, all the stimulants provoked a synchronized wave of proliferation with a steep increase of the percentage of S-phase hepatocytes from 4.5% in controls to 15,30% in treated rats. This increase was followed by a compensatory period of low proliferation during which a treatment with a second stimulant was much less effective. 3In 2/3 hepatectomized adult rats, the proliferation induced by cyproterone was higher than the spontaneous regenerative proliferation alone and additional to it during all of the regenerative process. The proliferation induced by acute inflammation was competitive with the synchronous spontaneous proliferation during the early period of synchronized proliferation following surgery, suggesting that both are similar acute responses. Differently, during the late period of lower and unsynchronized regenerative proliferation, the proliferation provoked by acute inflammation was additional to the spontaneous one. A stimulation of proliferation by injection of the albumin-bilirubin complex was observed during the late period after 2/3 hepatectomy. The highest level of stimulation occurred when the liver growth and the hepatocyte proliferation were already high. This suggests that these stimulants are not complete mitogenic stimuli and need cofactors which are present during the spontaneous growth or, alternatively, that the effect of stimulants is opposed by an inhibitory mechanism present in the adult rat. [source]


Differential expression of peroxisome proliferator activated receptor , and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cells

RESPIROLOGY, Issue 2 2010
Justine Y. LAU
ABSTRACT Background and objective: Airway remodelling involves thickening of the airway smooth muscle (ASM) bulk. Proliferation of asthma-derived ASM cells is increased in vitro, but underlying mechanisms remain unknown. Peroxisome proliferators activated receptor-, (PPAR,) regulates the cell cycle. It is suggested that PPAR, agonists have anti-inflammatory effects, which may be valuable in the treatment of asthma, but information regarding their antiproliferative properties in ASM is lacking. Although corticosteroids reduce airway inflammation, in vitro they inhibit proliferation in only non-asthma ASM cells by reducing cyclin D1. We therefore investigated the effects of mitogenic stimulation (foetal bovine serum (FBS)), and a PPAR, ligand (ciglitazone), on PPAR, and cyclin D1 expression and proliferation of ASM cells. In addition, we examined the effects of ciglitazone on ASM cell proliferation. Methods: We assessed PPAR, and cyclin D1 mRNA and protein levels using quantitative PCR and immunoblotting. Cell proliferation was assessed using bromodeoxyuridine uptake. Results: In the presence of 5% FBS, PPAR, and cyclin D1 expression decreased over time in non-asthmatic cells but increased in asthmatic cells (compared with sub-confluent cells). FBS-induced proliferation of asthmatic cells increased at all time points, but occurred only at day 7 with non-asthmatic cells (compared with unstimulated time-matched control). Ciglitazone increased PPAR, expression in both groups, but did not alter cell proliferation, while fluticasone increased PPAR, protein only in asthmatic cells. Conclusions: Although in the presence of a mitogenic stimulus, PPAR, was differentially expressed in asthma- and non-asthma-derived ASM; its expression was not related to the increased proliferation observed in asthmatic ASM. [source]