Mitochondrial Superoxide Dismutase (mitochondrial + superoxide_dismutase)

Distribution by Scientific Domains


Selected Abstracts


Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury,,

HEPATOLOGY, Issue 1 2010
M. Isabel Lucena
Drug-induced liver injury (DILI) susceptibility has a potential genetic basis. We have evaluated possible associations between the risk of developing DILI and common genetic variants of the manganese superoxide dismutase (SOD2 Val16Ala) and glutathione peroxidase (GPX1 Pro200Leu) genes, which are involved in mitochondrial oxidative stress management. Genomic DNA from 185 DILI patients assessed by the Council for International Organizations of Medical Science scale and 270 sex- and age-matched controls were analyzed. The SOD2 and GPX1 genotyping was performed using polymerase chain reaction restriction fragment length polymorphism and TaqMan probed quantitative polymerase chain reaction, respectively. The statistical power to detect the effect of variant alleles with the observed odds ratio (OR) was 98.2% and 99.7% for bilateral association of SOD2 and GPX1, respectively. The SOD2 Ala/Ala genotype was associated with cholestatic/mixed damage (OR = 2.3; 95% confidence interval [CI] = 1.4-3.8; corrected P [Pc] = 0.0058), whereas the GPX1 Leu/Leu genotype was associated with cholestatic injury (OR = 5.1; 95%CI = 1.6-16.0; Pc = 0.0112). The presence of two or more combined risk alleles (SOD2 Ala and GPX1 Leu) was more frequent in DILI patients (OR = 2.1; 95%CI = 1.4-3.0; Pc = 0.0006). Patients with cholestatic/mixed injury induced by mitochondria hazardous drugs were more prone to have the SOD2 Ala/Ala genotype (OR = 3.6; 95%CI = 1.4-9.3; Pc = 0.02). This genotype was also more frequent in cholestatic/mixed DILI induced by pharmaceuticals producing quinone-like or epoxide metabolites (OR = 3.0; 95%CI = 1.7-5.5; Pc = 0.0008) and S-oxides, diazines, nitroanion radicals, or iminium ions (OR = 16.0; 95%CI = 1.8-146.1; Pc = 0.009). Conclusion: Patients homozygous for the SOD2 Ala allele and the GPX1 Leu allele are at higher risk of developing cholestatic DILI. SOD2 Ala homozygotes may be more prone to suffer DILI from drugs that are mitochondria hazardous or produce reactive intermediates. (HEPATOLOGY 2010) [source]


Signs of critical illness polyneuropathy and myopathy can be seen early in the ICU course

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 6 2009
K. AHLBECK
Background: Critical illness polyneuropathy and myopathy (CIPNM) is recognized as a common condition that develops in the intensive care unit (ICU). It may lead to a prolonged hospital stay with subsequent increased ICU and hospital costs. Knowledge of predisposing factors is insufficient and the temporal pattern of CIPNM has not been well described earlier. This study investigated patients with critical illness in need of prolonged mechanical ventilation, describing comprehensively the time course of changes in muscle and nerve neurophysiology, histology and mitochondrial oxidative function. Methods: Ten intensive care patients were investigated 4, 14 and 28 days after the start of mechanical ventilation. Laboratory tests, neurophysiological examination, muscle biopsies and clinical examinations were performed. Neurophysiological criteria for CIPNM were noted and measurements for mitochondrial content, mitochondrial respiratory enzymes and markers of oxidative stress were performed. Results: While all patients showed pathologic changes in neurophysiologic measurements, only patients with sepsis and steroid treatment (5/5) fulfilled the CIPNM criteria. The presence of CIPNM did not affect the outcome, and the temporal pattern of CIPNM was not uniform. All CIP changes occurred early in ICU care, while myopathy changes appeared somewhat later. Citrate synthase was decreased between days 4 and 14, and mitochondrial superoxide dismutase was increased. Conclusion: With comprehensive examination over time, signs of CIPNM can be seen early in ICU course, and appear more likely to occur in patients with sepsis and corticosteroid treatment. [source]


Muscle mitochondrial activity increases rapidly after an endotoxin challenge in human volunteers

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 3 2009
K. FREDRIKSSON
Background: Mitochondrial derangements in muscle of patients suffering from sepsis have been established in several studies and have been related to muscle dysfunction and organ failure. It is not possible to study the early phase of sepsis in patients; therefore, we used a human endotoxaemia model to study the effect of early sepsis on muscle mitochondria. Methods: Seven healthy male volunteers received a standardised endotoxin challenge. Muscle biopsies were obtained immediately before the challenge, and at 2 and 4 h following the endotoxin challenge. The muscle biopsies were analysed for maximal activities of citrate synthase and complexes I and IV of the respiratory chain. In addition, total and mitochondrial superoxide dismutase (SOD) activities were analysed. The concentrations of ATP, creatine phosphate and lactate were analysed to assess the cellular energy status. Total and phosphorylated AMP-activated protein kinase (AMPK-P), a key regulator in intracellular energy metabolism, was measured. Results: Activities of citrate synthase and complex I were significantly increased 2 h after the endotoxin challenge. SOD activities were unaffected by the endotoxin challenge. No changes in ATP, creatine phosphate or lactate were observed. Neither total nor AMPK-P changed. Conclusions: An endotoxin challenge given to healthy volunteers rapidly increases mitochondrial enzyme activity in skeletal muscle. The results of this human model indicate that possibly early during sepsis, mitochondrial activity might be increased in contrast to what has been shown in the later phases of sepsis. It is possible that this early activation leads to exhaustion of the mitochondria and a decreased function later during sepsis. [source]


Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway,

THE JOURNAL OF PATHOLOGY, Issue 4 2007
E Richard
Abstract Methylmalonic acidaemia (MMA) is a heterogeneous group of rare genetic metabolic disorders caused by defects related to intracellular cobalamin (vitamin B12) metabolism. Increasing evidence has emerged suggesting that free radical generation is involved in the pathophysiology of neurodegenerative diseases, including some inborn errors of metabolism. We have previously identified in MMA patients several differentially expressed proteins involved in oxidative stress [mitochondrial superoxide dismutase (MnSOD) and mitochondrial glycerophosphate dehydrogenase (mGPDH)] and apoptosis by a proteomic approach. We have now extensively evaluated various parameters related to oxidative stress and apoptosis in cultured fibroblasts from a spectrum of patients with methylmalonic acidaemia. Fibroblasts from several MMA patients showed a significant increase in intracellular reactive oxygen species (ROS) content and in MnSOD expression level with respect to controls, suggesting a cellular response to intrinsic ROS stress. Moreover, we have demonstrated, using siRNA, that mGPDH is an important ROS generator in MMA patients. Cells from patients with MMA had a higher rate of apoptosis than those of controls and there was evidence that this process primarily involves the mitochondrial/caspase-dependent pathway. ROS level,phenotype correlation revealed that patients with severe neonatal cblB disorder had elevated intracellular ROS content. These findings support the possible role of oxidative stress in the pathophysiology of methylmalonic acidaemia. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Functional studies of frataxin

ACTA PAEDIATRICA, Issue 2004
G Isaya
Mitochondria generate adenosine triphosphate (ATP) but also dangerous reactive oxygen species (ROS). One-electron reduction of dioxygen in the early stages of the electron transport chain yields a superoxide radical that is detoxified by mitochondrial superoxide dismutase to give hydrogen peroxide. The hydroxyl radical is derived from decomposition of hydrogen peroxide via the Fenton reaction, catalyzed by Fe2+ ions. Mitochondria require a constant supply of Fe2+ for heme and iron-sulfur cluster biosyntheses and therefore are particularly susceptible to ROS attack. Two main antioxidant defenses are known in mitochondria: enzymes that catalytically remove ROS, e.g. superoxide dismutase and glutathione peroxidase, and low molecular weight agents that scavenge ROS, including coenzyme Q, glutathione, and vitamins E and C. An effective defensive system, however, should also involve means to control the availability of pro-oxidants such as Fe2+ ions. There is increasing evidence that this function may be carried out by the mitochondrial protein frataxin. Frataxin deficiency is the primary cause of Friedreich's ataxia (FRDA), an autosomal recessive degenerative disease. Frataxin is a highly conserved mitochondrial protein that plays a critical role in iron homeostasis. Respiratory deficits, abnormal cellular iron distribution and increased oxidative damage are associated with frataxin defects in yeast and mouse models of FRDA. The mechanism by which frataxin regulates iron metabolism is unknown. The yeast frataxin homologue (mYfhlp) is activated by Fe(II) in the presence of oxygen and assembles stepwise into a 48-subunit multimer (,48) that sequesters <2000 atoms of iron in a ferrihydrite mineral core. Assembly of mYfhlp is driven by two sequential iron oxidation reactions: a fast ferroxidase reaction catalyzed by mYfh1p induces the first assembly step (,,3), followed by a slower autoxidation reaction that promotes the assembly of higher order oligomers yielding ,48. Depending on the ionic environment, stepwise assembly is associated with the sequestration of 50,75 Fe(II)/subunit. This Fe(II) is initially loosely bound to mYfh1p and can be readily mobilized by chelators or made available to the mitochondrial enzyme ferrochelatase to synthesize heme. However, as iron oxidation and mineralization proceed, Fe(III) becomes progressively inaccessible and a stable iron-protein complex is produced. In conclusion, by coupling iron oxidation with stepwise assembly, frataxin can successively function as an iron chaperon or an iron store. Reduced iron availability and solubility and increased oxidative damage may therefore explain the pathogenesis of FRDA. [source]