Mitochondrial ROS (mitochondrial + ro)

Distribution by Scientific Domains

Terms modified by Mitochondrial ROS

  • mitochondrial ro production

  • Selected Abstracts


    Oxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an age-old question

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2008
    Gregory B. Waypa
    Hypoxic pulmonary vasoconstriction (HPV) becomes activated in response to alveolar hypoxia and, although the characteristics of HPV have been well described, the underlying mechanism of O2 sensing which initiates the HPV response has not been fully established. Mitochondria have long been considered as a putative site of oxygen sensing because they consume O2 and therefore represent the intracellular site with the lowest oxygen tension. However, two opposing theories have emerged regarding mitochondria-dependent O2 sensing during hypoxia. One model suggests that there is a decrease in mitochondrial reactive oxygen species (ROS) levels during the transition from normoxia to hypoxia, resulting in the shift in cytosolic redox to a more reduced state. An alternative model proposes that hypoxia paradoxically increases mitochondrial ROS signalling in pulmonary arterial smooth muscle. Experimental resolution of the question of whether the mitochondrial ROS levels increase or decrease during hypoxia has been problematic owing to the technical limitations of the tools used to assess oxidant stress as well as the pharmacological agents used to inhibit the mitochondrial electron transport chain. However, recent developments in genetic techniques and redox-sensitive probes may allow us eventually to reach a consensus concerning the O2 sensing mechanism underlying HPV. [source]


    Respiratory chain deficiency slows down cell-cycle progression via reduced ROS generation and is associated with a reduction of p21CIP1/WAF1

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
    Matthias Schauen
    We have used HeLa cells without mitochondrial DNA (,0 -cells) and transient ,0 -phenocopies, obtained from wild-type cells by short-term treatment with ethidium bromide, to analyze how the absence of a functional mitochondrial respiratory chain slows down proliferation. We ruled out an energetic problem (ATP/ADP content) as well as defective synthesis of pyrimidine, iron-sulfur clusters or heme as important causes for the proliferative defect. Flow cytometric analysis revealed that reactive oxygen species were reduced in ,0 -cells and in ,0 -phenocopies, and that, quite unusually, all stages of the cell cycle were slowed down. Specific quenching of mitochondrial ROS with the ubiquinone analog MitoQ also resulted in slower growth. Some important cell-cycle regulators were reduced in ,0 -cells: cyclin D3, cdk6, p18INK4C, p27KIP1, and p21CIP1/WAF1. In the ,0 -phenocopies, the expression pattern did not fully duplicate the complex response observed in ,0 -cells, and mainly p21CIP1/WAF1 was downregulated. Activities of the growth regulatory PKB/Akt and MAPK/ERK-signaling pathways did not correlate with proliferation rates of ,0 -cells and ,0 -phenocopies. Our study demonstrates that loss of a functional mitochondrial electron transport chain inhibits cell-cycle progression, and we postulate that this occurs through the decreased concentration of reactive oxygen species, leading to downregulation of p21CIP1/WAF1. J. Cell. Physiol. 209: 103,112, 2006. © 2006 Wiley-Liss, Inc. [source]


    Oxidative stress: A cause and therapeutic target of diabetic complications

    JOURNAL OF DIABETES INVESTIGATION, Issue 3 2010
    Eiichi Araki
    Abstract Oxidative stress is defined as excessive production of reactive oxygen species (ROS) in the presence of diminished anti-oxidant substances. Increased oxidative stress could be one of the common pathogenic factors of diabetic complications. However, the mechanisms by which hyperglycemia increases oxidative stress are not fully understood. In this review, we focus on the impact of mitochondrial derived ROS (mtROS) on diabetic complications and suggest potential therapeutic approaches to suppress mtROS. It has been shown that hyperglycemia increases ROS production from mitochondrial electron transport chain and normalizing mitochondrial ROS ameliorates major pathways of hyperglycemic damage, such as activation of polyol pathway, activation of PKC and accumulation of advanced glycation end-products (AGE). Additionally, in subjects with type 2 diabetes, we found a positive correlation between HbA1c and urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), which reflects mitochondrial oxidative damage, and further reported that 8-OHdG was elevated in subjects with diabetic micro- and macro- vascular complications. We recently created vascular endothelial cell-specific manganese superoxide dismutase (MnSOD) transgenic mice, and clarified that overexpression of MnSOD in endothelium could prevent diabetic retinopathy in vivo. Furthermore, we found that metformin and pioglitazone, both of which have the ability to reduce diabetic vascular complications, could ameliorate hyperglycemia-induced mtROS production by the induction of PPAR, coactivator-1, (PGC-1,) and MnSOD and/or activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). We also found that metformin and pioglitazone promote mitochondrial biogenesis through the same AMPK,PGC-1, pathway. Taking these results, mtROS could be the key initiator of and a therapeutic target for diabetic vascular complications. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00013.x, 2010) [source]


    The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 Saccharomyces cerevisiae

    AGING CELL, Issue 6 2009
    Nitish Mittal
    Summary Integrity of mitochondrial functionality is a key determinant of longevity in several organisms. In particular, reduced mitochondrial ROS (mtROS) production leading to decreased mtDNA damage is believed to be a crucial aspect of longevity. The generation of low mtROS was thought to be due to low mitochondrial oxygen consumption. However, recent studies have shown that higher mitochondrial oxygen consumption could still result in low mtROS and contribute to longevity. This increased mitochondrial efficiency (i.e. low mtROS generated despite high oxygen consumption) was explained as a result of mitochondrial biogenesis, which provides more entry points for the electrons to the electron transport chain (ETC), thereby resulting in low mtROS production. In this study, we provide evidence for the existence of an alternative pathway to explain the observed higher mitochondrial efficiency in the long-lived mrg19 mutant of Saccharomyces cerevisiae. Although we observe similar amounts of mitochondria in mrg19 and wild-type (wt) yeast, we find that mrg19 mitochondria have higher expression of ETC components per mitochondria in comparison with the wt. These findings demonstrate that more efficient mitochondria because of increased ETC per mitochondria can also produce less mtROS. Taken together, our findings provide evidence for an alternative explanation for the involvement of higher mitochondrial activity in prolonging lifespan. We anticipate that similar mechanisms might also exist in eukaryotes including human. [source]


    Apoptosis-inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxins

    ANNALS OF NEUROLOGY, Issue 2 2010
    Celine Perier PhD
    Objective Mitochondrial complex I deficits have long been associated with Parkinson disease (PD). However, it remains unknown whether such defects represent a primary event in dopaminergic neurodegeneration. Methods Apoptosis-inducing factor (AIF) is a mitochondrial protein that, independently of its proapoptotic properties, plays an essential physiologic role in maintaining a fully functional complex I. We used AIF-deficient harlequin (Hq) mice, which exhibit structural deficits in assembled complex I, to determine whether primary complex I defects linked to AIF depletion may cause dopaminergic neurodegeneration. Results Despite marked reductions in mitochondrial complex I protein levels, Hq mice did not display apparent alterations in the dopaminergic nigrostriatal system. However, these animals were much more susceptible to exogenous parkinsonian complex I inhibitors, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Subtoxic doses of MPTP, unable to cause damage to wild-type animals, produced marked nigrostriatal dopaminergic degeneration in Hq mice. This effect was associated with exacerbated complex I inhibition and increased production of mitochondrial-derived reactive oxygen species (ROS) in Hq brain mitochondria. The antioxidant superoxide dismutase-mimetic compound tempol was able to reverse the increased susceptibility of Hq mice to MPTP. Supporting an instrumental role for mitochondrial-derived ROS in PD-related neurodegeneration, transgenic mice overexpressing mitochondrially targeted catalase exhibited an attenuation of MPTP-induced mitochondrial ROS and dopaminergic cell death. Interpretation Structural complex I alterations linked to AIF deficiency do not cause dopaminergic neurodegeneration but increase the susceptibility of dopaminergic neurons to exogenous parkinsonian neurotoxins, reinforcing the concept that genetic and environmental factors may interact in a common molecular pathway to trigger PD. ANN NEUROL 2010;68:184,192 [source]