Home About us Contact | |||
Mitochondrial Reactive Oxygen Species (mitochondrial + reactive_oxygen_species)
Selected AbstractsAcute action of rotenone on nigral dopaminergic neurons , involvement of reactive oxygen species and disruption of Ca2+ homeostasisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009Peter S. Freestone Abstract Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05,1 ,m) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm) and intracellular [Na+] (3.1 ± 0.6 mm) (all with 1 ,m). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N -(p -amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm) Ca2+ response when baseline [Ca2+]i was increased by a ,priming' protocol that activated voltage-gated Ca2+ channels. There was also a positive correlation between ,naturally' occurring variations in baseline [Ca2+]i and the rotenone-induced [Ca2+]i rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K+ channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca2+]i rise by a small increase in baseline [Ca2+]i. [source] Oxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an age-old questionEXPERIMENTAL PHYSIOLOGY, Issue 1 2008Gregory B. Waypa Hypoxic pulmonary vasoconstriction (HPV) becomes activated in response to alveolar hypoxia and, although the characteristics of HPV have been well described, the underlying mechanism of O2 sensing which initiates the HPV response has not been fully established. Mitochondria have long been considered as a putative site of oxygen sensing because they consume O2 and therefore represent the intracellular site with the lowest oxygen tension. However, two opposing theories have emerged regarding mitochondria-dependent O2 sensing during hypoxia. One model suggests that there is a decrease in mitochondrial reactive oxygen species (ROS) levels during the transition from normoxia to hypoxia, resulting in the shift in cytosolic redox to a more reduced state. An alternative model proposes that hypoxia paradoxically increases mitochondrial ROS signalling in pulmonary arterial smooth muscle. Experimental resolution of the question of whether the mitochondrial ROS levels increase or decrease during hypoxia has been problematic owing to the technical limitations of the tools used to assess oxidant stress as well as the pharmacological agents used to inhibit the mitochondrial electron transport chain. However, recent developments in genetic techniques and redox-sensitive probes may allow us eventually to reach a consensus concerning the O2 sensing mechanism underlying HPV. [source] Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; a hypothesisFEMS YEAST RESEARCH, Issue 4 2003David Lloyd Abstract Oscillatory metabolic activities occur more widely than is generally realised; detectability requires observation over extended times of single yeast cells or synchrony of individuals to provide a coherent population. Where oscillations in intracellular metabolite concentrations are observed, the phenomenon has been ascribed to sloppy control, energetic optimisation, signalling, temporal compartmentation of incompatible reactions, or timekeeping functions. Here we emphasise the consequences of respiratory oscillations as a source of mitochondrially generated reactive O2 metabolites. Temporal co-ordination of intracellular activities necessitates a time base. This is provided by an ultradian clock, and one result of its long-term operation is cyclic energisation of mitochondria, and thereby the generation of deleterious free radical species. Our hypothesis is that unrepaired cellular constituents and components (especially mitochondria) eventually lead to cellular senescence and apoptosis when a finite number of respiratory cycles has occurred. [source] A Mitochondrial view of aging, reactive oxygen species and metastatic cancerAGING CELL, Issue 4 2010Warren Ladiges Summary This perspective article highlights the growing evidence placing mitochondria and mitochondrial function at the center of cancer as an age-related disease. The discussion starts from the mitochondrial free radical hypothesis that predicts the involvement of endogenous mitochondrial reactive oxygen species (ROS) in cancer development and summarizes studies demonstrating the impact of the modulation of ROS levels on cancer development and metastasis. Cancer is fundamentally a complex interplay of cell growth, division, metastasis and death- processes connected to mitochondria through energy metabolism. Based on this evidence, therapeutics focused on mitochondrial function and mitochondrial ROS production are an attractive approach to modulating the progression of metastatic cancer and the general improvement of human health span. [source] Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondriaAGING CELL, Issue 4 2010Dao-Fu Dai Summary Mitochondrial defects have been found in aging and several age-related diseases. Mice with a homozygous mutation in the exonuclease encoding domain of mitochondrial DNA polymerase gamma (Polgm/m) are prone to age-dependent accumulation of mitochondrial DNA mutations and have shown a broad spectrum of aging-like phenotypes. However, the mechanism of cardiac phenotypes in relation to the role of mitochondrial DNA mutations and oxidative stress in this mouse model has not been fully addressed. We demonstrate age-dependent cardiomyopathy in Polgm/m mice, which by 13,14 months of age displays marked cardiac hypertrophy and dilatation, impairment of systolic and diastolic function, and increased cardiac fibrosis. This age-dependent cardiomyopathy is associated with increases in mitochondrial DNA (mtDNA) deletions and protein oxidative damage, increased expression of apoptotic and senescence markers, as well as a decline in signaling for mitochondrial biogenesis. The relationship of these changes to mitochondrial reactive oxygen species (ROS) was tested by crossing Polgm/m mice with mice that overexpress mitochondrial targeted catalase (mCAT). All of the above phenotypes were partially rescued in Polgm/m/mCAT mice. These data indicate that accumulation of mitochondrial DNA damage with age can lead to cardiomyopathy and that this phenotype is partly mediated by mitochondrial oxidative stress. [source] A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunctionAGING CELL, Issue 2 2010Olga A. Kovalenko Summary Telomerase is a reverse transcriptase specialized in telomere synthesis. The enzyme is primarily nuclear where it elongates telomeres, but many reports show that the catalytic component of telomerase (in humans called hTERT) also localizes outside of the nucleus, including in mitochondria. Shuttling of hTERT between nucleus and cytoplasm and vice versa has been reported, and different proteins shown to regulate such translocation. Exactly why telomerase moves between subcellular compartments is still unclear. In this study we report that mutations that disrupt the nuclear export signal (NES) of hTERT render it nuclear but unable to immortalize cells despite retention of catalytic activity in vitro. Overexpression of the mutant protein in primary fibroblasts is associated with telomere-based cellular senescence, multinucleated cells and the activation of the DNA damage response genes ATM, Chk2 and p53. Mitochondria function is also impaired in the cells. We find that cells expressing the mutant hTERT produce high levels of mitochondrial reactive oxygen species and have damage in telomeric and extratelomeric DNA. Dysfunctional mitochondria are also observed in an ALT (alternative lengthening of telomeres) cell line that is insensitive to growth arrest induced by the mutant hTERT showing that mitochondrial impairment is not a consequence of the growth arrest. Our data indicate that mutations involving the NES of hTERT are associated with defects in telomere maintenance, mitochondrial function and cellular growth, and suggest targeting this region of hTERT as a potential new strategy for cancer treatment. [source] Mitochondrial function and apoptotic susceptibility in aging skeletal muscleAGING CELL, Issue 1 2008Béatrice Chabi Summary During aging, skeletal muscle undergoes sarcopenia, a condition characterized by a loss of muscle cell mass and alterations in contractile function. The origin of these decrements is unknown, but evidence suggests that they can be partly attributed to mitochondrial dysfunction. To characterize the nature of this dysfunction, we investigated skeletal muscle contractile properties, subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial biogenesis and function, as well as apoptotic susceptibility in young (6 months old) and senescent (36 months old) Fischer 344 Brown Norway rats. Muscle mass and maximal force production were significantly lower in the 36-month group, which is indicative of a sarcopenic phenotype. Furthermore, contractile activity in situ revealed greater fatigability in the 36-month compared to the 6-month animals. This decrement could be partially accounted for by a 30% lower mitochondrial content in fast-twitch muscle from 36-month animals, as well as lower protein levels of the transcriptional coactivator peroxisome proliferator-activated receptor , coactivator-1,. Enzyme activities and glutamate-induced oxygen consumption rates in isolated SS and IMF mitochondria were similar between age groups. However, mitochondrial reactive oxygen species (ROS) production during state 3 respiration was ~1.7-fold greater in mitochondria isolated from 36-month compared to 6-month animals, and was accompanied by a 1.8-fold increase in the DNA repair enzyme 8-oxoguanine glycosylase 1 in fast-twitch muscle. Basal rates of release of cytochrome c and endonuclease G in SS mitochondria were 3.5- to 7-fold higher from senescent animals. These data suggest that the age-related sarcopenia and muscle fatigability are associated with enhanced ROS production, increased mitochondrial apoptotic susceptibility and reduced transcriptional drive for mitochondrial biogenesis. [source] Do mitochondrial DNA haplogroups play a role in susceptibility to tuberculosis?RESPIROLOGY, Issue 6 2007Massoud HOUSHMAND Background and objectives: Mitochondrial DNA has a unique role in ATP production and subsequent mitochondrial reactive oxygen species (ROS) production in eukaryotic cells and there is a potential role for ROS and oxygen burst against Mycobacterium tuberculosis, an intracellular pathogen. This study aimed to determine whether the frequency of different mitochondrial haplogroups was significantly different in patients with tuberculosis (TB) compared with a normal population. Methods: Mitochondrial DNA haplogroups M, N, J and K were studied by PCR-restriction fragment length polymorphism and sequencing. Cases were 54 patients with confirmed smear positive pulmonary TB. Controls were 256 healthy persons. Results: There were no statistically significant differences between those with TB and the control group. Conclusions: There was no statistically significant association between mtDNA haplogroups and the presence of TB infection. [source] Functional studies of an HIV-1 encoded glutathione peroxidaseBIOFACTORS, Issue 1-4 2006Lijun Zhao Abstract In an alternate reading frame overlapping the viral envelope gene, HIV-1 has been shown to encoded a truncated glutathione peroxidase (GPx) module. Essential active site residues of the catalytic core regions of mammalian GPx sequences are conserved in the putative viral GPx (vGPx, encoded by the env-fs gene). Cells transfected with an HIV-1 env-fs construct show up to a 100% increase in GPx enzyme activity, and are protected against the loss of mitochondrial transmembrane potential and subsequent cell death induced by exogenous oxidants or mitochondrial reactive oxygen species. An intact vGPx gene was observed to be more common in HIV-1-infected long-term non-progressors, as compared to HIV-1 isolates from patients developing AIDS. An antioxidant/antiapoptotic protective role of the vGPx is also consistent with the observation that ,1 frameshifting induced by the HIV-1 env-fs sequence AAAAAGA (which contains a potential "hungry" arginine codon, AGA) increases during arginine deficiency, which has been associated with increased oxidative stress. Under arginine-limited conditions, nitric oxide synthase generates superoxide, which rapidly combines with NO to form peroxynitrite, which can cause activated T-cells to undergo apoptosis. Thus, biosynthesis of the HIV-1 GPx as an adaptive response to low arginine conditions might delay oxidant-induced apoptotic cell death, providing an enhanced opportunity for viral replication. [source] |