Home About us Contact | |||
Mitochondrial Matrix (mitochondrial + matrix)
Selected AbstractsA compendium of human mitochondrial gene expression machinery with links to diseaseENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2010Timothy E. Shutt Abstract Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reportersEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Kelly L. Rogers Abstract Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+ -sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260,7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ,real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell,cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies. [source] Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondriaFEBS JOURNAL, Issue 13 2008Tatjana M. Hildebrandt Hydrogen sulfide is a potent toxin of aerobic respiration, but also has physiological functions as a signalling molecule and as a substrate for ATP production. A mitochondrial pathway catalyzing sulfide oxidation to thiosulfate in three consecutive reactions has been identified in rat liver as well as in the body-wall tissue of the lugworm, Arenicola marina. A membrane-bound sulfide : quinone oxidoreductase converts sulfide to persulfides and transfers the electrons to the ubiquinone pool. Subsequently, a putative sulfur dioxygenase in the mitochondrial matrix oxidizes one persulfide molecule to sulfite, consuming molecular oxygen. The final reaction is catalyzed by a sulfur transferase, which adds a second persulfide from the sulfide : quinone oxidoreductase to sulfite, resulting in the final product thiosulfate. This role in sulfide oxidation is an additional physiological function of the mitochondrial sulfur transferase, rhodanese. [source] Submitochondrial localization of 6- N -trimethyllysine dioxygenase , implications for carnitine biosynthesisFEBS JOURNAL, Issue 22 2007Naomi Van Vlies The first enzyme of carnitine biosynthesis is the mitochondrial 6- N -trimethyllysine dioxygenase, which converts 6- N -trimethyllysine to 3-hydroxy-6- N -trimethyllysine. Using progressive membrane solubilization with digitonin and protease protection experiments, we show that this enzyme is localized in the mitochondrial matrix. Latency experiments with intact mitochondria showed that 3-hydroxy-6- N -trimethyllysine formation is limited by 6- N -trimethyllysine transport across the mitochondrial inner membrane. Because the subsequent carnitine biosynthesis enzymes are cytosolic, after production, 3-hydroxy-6- N -trimethyllysine must be transported out of the mitochondria by a putative mitochondrial 6- N -trimethyllysine/3-hydroxy-6- N -trimethyllysine transporter system. This transport system represents an additional step in carnitine biosynthesis that could have considerable implications for the regulation of carnitine biosynthesis. [source] Exopolyphosphatases of the yeast Saccharomyces cerevisiaeFEMS YEAST RESEARCH, Issue 3 2003Lidia P Lichko Abstract Separate compartments of the yeast cell possess their own exopolyphosphatases differing from each other in their properties and dependence on culture conditions. The low-molecular-mass exopolyphosphatases of the cytosol, cell envelope, and mitochondrial matrix are encoded by the PPX1 gene, while the high-molecular-mass exopolyphosphatase of the cytosol and those of the vacuoles, mitochondrial membranes, and nuclei are presumably encoded by their own genes. Based on recent works, a preliminary classification of the yeast exopolyphosphatases is proposed. [source] Mitochondrial A, A potential cause of metabolic dysfunction in Alzheimer's diseaseIUBMB LIFE, Issue 12 2006Xi Chen Abstract Deficits in mitochondrial function are a characteristic finding in Alzheimer's disease (AD), though the mechanism remains to be clarified. Recent studies revealed that amyloid , peptide (A,) gains access into mitochondrial matrix, which was much more pronounced in both AD brain and transgenic mutant APP mice than in normal controls. A, progressively accumulates in mitochondria and mediates mitochondrial toxicity. Interaction of mitochondrial A, with mitochondrial enzymes such as amyloid , binding alcohol dehydrogenase (ABAD) exaggerates mitochondrial stress by inhibiting the enzyme activity, releasing reactive oxygen species (ROS), and affecting glycolytic, Krebs cycle and/or the respiratory chain pathways through the accumulation of deleterious intermediate metabolites. The pathways proposed may play a key role in the pathogenesis of this devastating neurodegenerative disorder, Alzheimer's disease. iubmb Life, 58: 686-694, 2006 [source] Release of Ca 2+ from Mitochondria via the Saturable Mechanisms and the Permeability TransitionIUBMB LIFE, Issue 3-5 2001Douglas R. Pfeiffer Abstract The literature, reviewed in the previous article, supports three physiological roles for sequestration of calcium by mitochondria: 1) control of the rate of ATP production, 2) activation of the Ca 2+ -induced mitochondrial permeability transition (PT), and 3) modulation of cytosolic Ca 2+ transients. Removal of Ca 2+ from mitochondria permits rapid and efficient changes in the rate of ATP production to adapt to changing demands and can reverse the process of PT induction. Two separate, saturable mechanisms for facilitating Ca 2+ efflux from mitochondria exist. In addition, the permeability transition or PT, which may also remove Ca 2+ from the mitochondrial matrix, is intimately involved in other important functions such as apoptosis. Here we briefly review what is known about these important mitochondrial mechanisms and from their behavior speculate on their possible and probable functions. [source] Translocation of Proteins into MitochondriaIUBMB LIFE, Issue 6 2001Nicholas J. Hoogenraad Abstract The translocase of the outer mitochondrial membrane (TOM) is composed of receptors, a channel protein, and its modulators that function together to import proteins into mitochondria. Although the import pathway of proteins directed to the mitochondrial matrix has been well characterized, recent studies into the import pathway taken by proteins into the other submitochondrial compartments have broadened our understanding into the way the TOM machinery recognizes, interacts, and translocates proteins. [source] Localizations of intracellular calcium and Ca2+ -ATPase in hamster spermatogenic cells and spermatozoaMICROSCOPY RESEARCH AND TECHNIQUE, Issue 8 2006H.L. Feng Abstract Calcium plays a predominant role regulating many functional processes of spermatogenesis and fertilization. The purpose of the present study is to define the exact location of calcium as well as examine the role it plays during spermatogenesis and sperm capacitation. Testes and epididymides were obtained from adult healthy male hamsters. Spermatozoa were incubated with modified Tyrode's medium up to 4 h at 37°C for sperm capacitation in vitro. Samples of the testes and sperm cells were analyzed by cytochemical techniques to determine the location of calcium and Ca2+ -ATPase and the percentage of acrosome reactions under light and electron microscopy. The data showed that (1) Sertoli cells exhibited numerous calcium precipitates as large, round, electron-dense bodies distributed throughout the cytoplasm and the mitochondrial matrix. Fine calcium precipitates existed in fewer numbers in the intracellular storage sites of spermatogonia and primary spermatocytes, in sharp distinction to secondary spermatocyte and spermatids, which showed an abundance of large and round calcium precipitates, especially in the mitochondrial matrix of spermatids. More calcium deposits were distributed in the plasma membrane (PM), acrosome membrane, and matrices of the acrosome and mitochondria following capacitation; (2) Ca2+ -ATPase was found in the endoplasmic reticulum system and PM of noncapacitated spermatozoa as well as Sertoli cells. Capacitated spermatozoa showed a weak signal. These results suggest that the presence of calcium in spermatogenic cells might play a role in cell growth and differentiation during spermatogenesis. The Ca2+ -ATPase function may be inhibited during capacitation, leading to an increase in acrosomal calcium level and triggering of acrosomal exocytosis. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source] Preliminary X-ray crystallographic studies of yeast mitochondrial protein Tom70pACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2006Yunkun Wu Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tom70p is an important TOM-complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) was crystallized. The crystals diffract to 3.2,Å using a synchrotron X-ray source and belong to space group P21, with unit-cell parameters a = 44.89, b = 168.78, c = 83.41,Å, , = 90.00, , = 102.74, , = 90.00°. There are two Tom70p molecules in one asymmetric unit, which corresponds to a solvent content of approximately 51%. Structure determination by MAD methods is under way. [source] |