Mitochondrial Homeostasis (mitochondrial + homeostasi)

Distribution by Scientific Domains


Selected Abstracts


Expression of mutant SOD1G93A in astrocytes induces functional deficits in motoneuron mitochondria

JOURNAL OF NEUROCHEMISTRY, Issue 5 2008
Lynsey G. Bilsland
Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneuron degeneration resulting in paralysis and eventual death. ALS is regarded as a motoneuron-specific disorder but increasing evidence indicates non-neuronal cells play a significant role in disease pathogenesis. Although the precise aetiology of ALS remains unclear, mutations in the superoxide dismutase (SOD1) gene are known to account for approximately 20% of familial ALS. We examined the influence of SOD1G93A expression in astrocytes on mitochondrial homeostasis in motoneurons in a primary astrocyte : motoneuron co-culture model. SOD1G93A expression in astrocytes induced changes in mitochondrial function of both SOD1G93A and wild-type motoneurons. In the presence of SOD1G93A astrocytes, mitochondrial redox state of both wild-type and SOD1G93A motoneurons was more reduced and mitochondrial membrane potential decreased. While intra-mitochondrial calcium levels [Ca2+]m were elevated in SOD1G93A motoneurons, changes in mitochondrial function did not correlate with [Ca2+]m. Thus, expression of SOD1G93A in astrocytes directly alters mitochondrial function even in embryonic motoneurons, irrespective of genotype. These early deficits in mitochondrial function induced by surrounding astrocytes may increase the vulnerability of motoneurons to other neurotoxic mechanisms involved in ALS pathogenesis. [source]


The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia

JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
Amit S. Korde
Abstract Ischemic stroke is caused by acute neuronal degeneration provoked by interruption of cerebral blood flow. Although the mechanisms contributing to ischemic neuronal degeneration are myriad, mitochondrial dysfunction is now recognized as a pivotal event that can lead to either necrotic or apoptotic neuronal death. Lack of suitable ,upstream' targets to prevent loss of mitochondrial homeostasis has, so far, restricted the development of mechanistically based interventions to promote neuronal survival. Here, we show that the uncoupling agent 2,4 dinitrophenol (DNP) reduces infarct volume approximately 40% in a model of focal ischemia,reperfusion injury in the rat brain. The mechanism of protection involves an early decrease in mitochondrial reactive oxygen species formation and calcium uptake leading to improved mitochondrial function and a reduction in the release of cytochrome c into the cytoplasm. The observed effects of DNP were not associated with enhanced cerebral perfusion. These findings indicate that compounds with uncoupling properties may confer neuroprotection through a mechanism involving stabilization of mitochondrial function. [source]


Fasting is neuroprotective following traumatic brain injury,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2008
Laurie M. Davis
Abstract To determine the neuroprotective effect of fasting after traumatic brain injury (TBI) and to elucidate the potential underlying mechanisms, we used a controlled cortical impact (CCI) injury model to induce either a moderate or a severe injury to adult male Sprague Dawley rats. Tissue-sparing assessments were used to determine the level of neuroprotection of fasting, hypoglycemia (insulin 10 U), or ketone (1.66 mmoles/kg/day or 0.83 mmoles/kg/day; D-beta-hydroxtbutyrate) administration. Mitochondrial isolation and respiratory studies were utilized to determine the functionality of mitochondria at the site of injury. We also investigated biomarkers of oxidative stress, such as lipid/protein oxidation, reactive oxygen species (ROS) production, and intramitochondrial calcium load, as a secondary measure of mitochondrial homeostasis. We found that fasting animals for 24 hr, but not 48 hr, after a moderate (1.5 mm), but not severe (2.0 mm), CCI resulted in a significant increase in tissue sparing. This 24-hr fast also decreased biomarkers of oxidative stress and calcium loading and increased mitochondrial oxidative phosphorylation in mitochondria isolated from the site of injury. Insulin administration, designed to mimic the hypoglycemic effect seen during fasting did not result in significant tissue sparing after moderate CCI injury and in fact induced increased mortality at some injection time points. However, the administration of ketones resulted in increased tissue sparing after moderate injury. Fasting for 24 hr confers neuroprotection, maintains cognitive function, and improves mitochondrial function after moderate (1.5 mm) TBI. The underlying mechanism appears to involve ketosis rather than hypoglycemia. © 2008 Wiley-Liss, Inc. [source]