Home About us Contact | |||
Mitochondrial GSH (mitochondrial + gsh)
Selected AbstractsSelective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liverHEPATOLOGY, Issue 2 2002Ping Zhao Chronic alcohol consumption may potentiate acetaminophen (APAP) hepatotoxicity through enhanced formation of N -acetyl- p -benzoquinone imine (NAPQI) via induction of cytochrome P450 2E1 (CYP2E1). However, CYP2E1 induction appears to be insufficient to explain the claimed magnitude of the interaction. We assessed the role of selective depletion of liver mitochondrial glutathione (GSH) by chronic ethanol. Rats were fed the Lieber-DeCarli diet for 10 days or 6 weeks. APAP toxicity in liver slices (% glutathione- S -transferase , released to the medium, GST release) and NAPQI toxicity in isolated liver mitochondria (succinate dehydrogenase inactivation, SDH) from these rats were compared with pair-fed controls. Ethanol induced CYP2E1 in both the 10-day and 6-week groups by ,2-fold. APAP toxicity in liver slices was higher in the 6-week ethanol group than the 10-day ethanol group. Partial inhibition of NAPQI formation by CYP2E1 inhibitor diethyldithiocarbamate to that of pair-fed controls abolished APAP toxicity in the 10-day ethanol group only. Ethanol selectively depleted liver mitochondrial GSH only in the 6-week group (by 52%) without altering cytosolic GSH. Significantly greater GSH loss and APAP covalent binding were observed in liver slice mitochondria of the 6-week ethanol group. Isolated mitochondria of the 6-week ethanol group were ,50% more susceptible to NAPQI (25-165 ,mol/L) induced SDH inactivation. This increased susceptibility was reproduced in pair-fed control mitochondria pretreated with diethylmaleate. In conclusion, 10-day ethanol feeding enhances APAP toxicity through CYP2E1 induction, whereas 6-week ethanol feeding potentiates APAP hepatotoxicity by inducing CYP2E1 and selectively depleting mitochondrial GSH. [source] ,-Glutamyltranspeptidase,deficient knockout mice as a model to study the relationship between glutathione status, mitochondrial function, and cellular functionHEPATOLOGY, Issue 4 2000Yvonne Will ,-Glutamyltranspeptidase (GGT)-deficient mice (GGT,/,) display chronic glutathione (GSH) deficiency, growth retardation, and die at a young age (<20 weeks). Using livers from these mice, we investigated the relationship between GSH content, especially mitochondrial, and mitochondrial and cellular function. We found that the GSH content of isolated liver mitochondria was diminished by ,50% in GGT,/, mice when compared with wild-type mice. Respiratory control ratios (RCRs) of GGT,/, mice liver mitochondria were ,60% those of wild-type mice primarily as a result of impaired state 3 respiration. Mitochondrial adenine nucleotide content was decreased by ,40% in mitochondria obtained from GGT,/, mice. We observed a strong correlation between mitochondrial GSH content and RCRs. Even moderate decreases (<50%) correlated with adverse effects with respect to respiration. Electron microscopy revealed that livers from GGT,/, knockout mice were deprived of fat and glycogen, and swollen mitochondria were observed in animals that were severely deprived of GSH. Thus, GGT,/, mice exhibit a loss of GSH homeostasis and impaired oxidative phosphorylation, which may be related to the rate of adenosine triphosphate (ATP) formation and subsequently leads to progressive liver injury, which characterizes the diseased state. We also found that supplementation of GGT,/, mice with N -acetylcysteine (NAC) partially restored liver GSH, but fully restored mitochondrial GSH and respiratory function. Electron microscopy revealed that the livers of NAC-supplemented GGT,/, mice contained fat and glycogen; however, slightly enlarged mitochondria were found in some livers. NAC supplementation did not have any beneficial effect on the parameters examined in wild-type mice. [source] Effect of Chronic Ethanol Ingestion on Alveolar Type II Cell: Glutathione and Inflammatory Mediator-Induced ApoptosisALCOHOLISM, Issue 7 2001Lou Ann S. Brown Background : In septic patients, chronic alcohol abuse increases the incidence of the acute respiratory distress syndrome, a syndrome that requires alveolar type II cell proliferation and differentiation for repair of the damaged alveolar epithelium. We previously showed in a rat model that chronic ethanol ingestion decreased the antioxidant glutathione (GSH) in type II cells and exacerbated endotoxin-mediated acute lung injury. We hypothesized that this GSH depletion by ethanol, particularly mitochondrial GSH, predisposed type II cells to inflammatory mediator-induced apoptosis. Methods: Adult male rats were fed the Lieber-DeCarli diet for 2, 6, or 16 weeks. Alveolar type II cells were then isolated and treated with hydrogen peroxide or TNF-,. The effect on glutathione (cytosolic and mitochondrial), apoptotic events, and necrosis were determined. In other studies, rats were fed ethanol for 6 weeks and were treated with endotoxin and apoptosis of type II cells determined by the TUNEL method. Results: Chronic ethanol ingestion alone resulted in a progressive decrease in mitochondrial GSH and a progressive increase in the basal apoptosis and necrosis rate (p, 0.05). Furthermore, there was a progressive increase in the sensitivity of the cells to H2O2 or TNF-, induced cytochrome c release, caspase 3 activation, apoptosis, and necrosis (p, 0.05). Finally, there was a 2-fold increase in apoptotic type II cells in vivo when chronic ethanol ingestion was superimposed on endotoxemia. Conclusions: These results suggested that chronic ethanol ingestion resulted in a progressive depletion of mitochondrial GSH and sensitization of type II cells to inflammatory mediator-induced apoptosis and necrosis. These effects may be particularly relevant during acute stress when proliferation and differentiation of these cells are critical to repair of the damaged alveolar epithelium and may have important ramifications for the treatment of acute respiratory distress syndrome in patients with a history of alcohol abuse. [source] |