Home About us Contact | |||
Mitochondrial Electron Transport Chain (mitochondrial + electron_transport_chain)
Selected AbstractsOxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an age-old questionEXPERIMENTAL PHYSIOLOGY, Issue 1 2008Gregory B. Waypa Hypoxic pulmonary vasoconstriction (HPV) becomes activated in response to alveolar hypoxia and, although the characteristics of HPV have been well described, the underlying mechanism of O2 sensing which initiates the HPV response has not been fully established. Mitochondria have long been considered as a putative site of oxygen sensing because they consume O2 and therefore represent the intracellular site with the lowest oxygen tension. However, two opposing theories have emerged regarding mitochondria-dependent O2 sensing during hypoxia. One model suggests that there is a decrease in mitochondrial reactive oxygen species (ROS) levels during the transition from normoxia to hypoxia, resulting in the shift in cytosolic redox to a more reduced state. An alternative model proposes that hypoxia paradoxically increases mitochondrial ROS signalling in pulmonary arterial smooth muscle. Experimental resolution of the question of whether the mitochondrial ROS levels increase or decrease during hypoxia has been problematic owing to the technical limitations of the tools used to assess oxidant stress as well as the pharmacological agents used to inhibit the mitochondrial electron transport chain. However, recent developments in genetic techniques and redox-sensitive probes may allow us eventually to reach a consensus concerning the O2 sensing mechanism underlying HPV. [source] Transcription of mammalian cytochrome c oxidase subunit IV-2 is controlled by a novel conserved oxygen responsive elementFEBS JOURNAL, Issue 21 2007Maik Hüttemann Subunit 4 of cytochrome c oxidase (CcO) is a nuclear-encoded regulatory subunit of the terminal complex of the mitochondrial electron transport chain. We have recently discovered an isoform of CcO 4 (CcO4-2) which is specific to lung and trachea, and is induced after birth. The role of CcO as the major cellular oxygen consumer, and the lung-specific expression of CcO4-2, led us to investigate CcO4-2 gene regulation. We cloned the CcO4-2 promoter regions of cow, rat and mouse and compared them with the human promoter. Promoter activity is localized within a 118-bp proximal region of the human promoter and is stimulated by hypoxia, reaching a maximum (threefold) under 4% oxygen compared with normoxia. CcO4-2 oxygen responsiveness was assigned by mutagenesis to a novel promoter element (5,-GGACGTTCCCACG-3,) that lies within a 24-bp region that is 79% conserved in all four species. This element is able to bind protein, and competition experiments revealed that, within the element, the four core bases 5,-TCNCA-3, are obligatory for transcription factor binding. CcO isolated from lung showed a 2.5-fold increased maximal turnover compared with liver CcO. We propose that CcO4-2 expression in highly oxygenated lung and trachea protects these tissues from oxidative damage by accelerating the last step in the electron transport chain, leading to a decrease in available electrons for free radical formation. [source] Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression,HEPATOLOGY, Issue 6 2009Kimberley D. Bruce Nonalcoholic fatty liver disease (NAFLD) describes an increasingly prevalent spectrum of liver disorders associated with obesity and metabolic syndrome. It is uncertain why steatosis occurs in some individuals, whereas nonalcoholic steatohepatitis (NASH) occurs in others. We have generated a novel mouse model to test our hypothesis: that maternal fat intake contributes to the development of NAFLD in adult offspring. Female mice were fed either a high-fat (HF) or control chow (C) diet before and during gestation and lactation. Resulting offspring were fed either a C or a HF diet after weaning, to generate four offspring groups; HF/HF, HF/C, C/HF, C/C. At 15 weeks of age, liver histology was normal in both the C/C and HF/C offspring. Kleiner scoring showed that although the C/HF offspring developed nonalcoholic fatty liver, the HF/HF offspring developed NASH. At 30 weeks, histological analysis and Kleiner scoring showed that both the HF/C and C/HF groups had NAFLD, whereas the HF/HF had a more severe form of NASH. Therefore, exposure to a HF diet in utero and during lactation contributes toward NAFLD progression. We investigated the mechanisms by which this developmental priming is mediated. At 15 weeks of age, hepatic mitochondrial electron transport chain (ETC) enzyme complex activity (I, II/III, and IV) was reduced in both groups of offspring from HF-fed mothers (HF/C and HF/HF). In addition, measurement of hepatic gene expression indicated that lipogenesis, oxidative stress, and inflammatory pathways were up-regulated in the 15-week-old HF/C and HF/HF offspring. Conclusion: Maternal fat intake contributes toward the NAFLD progression in adult offspring, which is mediated through impaired hepatic mitochondrial metabolism and up-regulated hepatic lipogenesis. (HEPATOLOGY 2009.) [source] Catechin as an antioxidant in liver mitochondrial toxicity: Inhibition of tamoxifen-Induced protein oxidation and lipid peroxidation,JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2007Heena Tabassum Abstract Tamoxifen (TAM) is a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment and prevention of breast cancer. TAM brings about a collapse of the mitochondrial membrane potential. It acts both as an uncoupling agent and as a powerful inhibitor of mitochondrial electron transport chain. The effect of catechin pretreatment on the mitochondrial toxicity of TAM was studied in liver mitochondria of Swiss albino mice. TAM treatment caused a significant increase in the mitochondrial lipid peroxidation (LPO) and the protein carbonyls (PCs). It also caused a significant increase in superoxide radical production. Pretreatment of mice with catechin (40 mg/kg) showed significant protection as demonstrated by marked attenuation of increased oxidative stress parameters such LPO, PCs, and superoxide production. It also restored the decreased nonenzymatic and enzymatic antioxidants of mitochondria. The inhibitory effect of catechin on TAM-induced oxidative damage suggests that it may have potential benefits in prevention of human diseases where reactive oxygen species have some role as causative agents. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:110,117, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20167 [source] Respiratory chain deficiency slows down cell-cycle progression via reduced ROS generation and is associated with a reduction of p21CIP1/WAF1JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006Matthias Schauen We have used HeLa cells without mitochondrial DNA (,0 -cells) and transient ,0 -phenocopies, obtained from wild-type cells by short-term treatment with ethidium bromide, to analyze how the absence of a functional mitochondrial respiratory chain slows down proliferation. We ruled out an energetic problem (ATP/ADP content) as well as defective synthesis of pyrimidine, iron-sulfur clusters or heme as important causes for the proliferative defect. Flow cytometric analysis revealed that reactive oxygen species were reduced in ,0 -cells and in ,0 -phenocopies, and that, quite unusually, all stages of the cell cycle were slowed down. Specific quenching of mitochondrial ROS with the ubiquinone analog MitoQ also resulted in slower growth. Some important cell-cycle regulators were reduced in ,0 -cells: cyclin D3, cdk6, p18INK4C, p27KIP1, and p21CIP1/WAF1. In the ,0 -phenocopies, the expression pattern did not fully duplicate the complex response observed in ,0 -cells, and mainly p21CIP1/WAF1 was downregulated. Activities of the growth regulatory PKB/Akt and MAPK/ERK-signaling pathways did not correlate with proliferation rates of ,0 -cells and ,0 -phenocopies. Our study demonstrates that loss of a functional mitochondrial electron transport chain inhibits cell-cycle progression, and we postulate that this occurs through the decreased concentration of reactive oxygen species, leading to downregulation of p21CIP1/WAF1. J. Cell. Physiol. 209: 103,112, 2006. © 2006 Wiley-Liss, Inc. [source] Oxidative stress: A cause and therapeutic target of diabetic complicationsJOURNAL OF DIABETES INVESTIGATION, Issue 3 2010Eiichi Araki Abstract Oxidative stress is defined as excessive production of reactive oxygen species (ROS) in the presence of diminished anti-oxidant substances. Increased oxidative stress could be one of the common pathogenic factors of diabetic complications. However, the mechanisms by which hyperglycemia increases oxidative stress are not fully understood. In this review, we focus on the impact of mitochondrial derived ROS (mtROS) on diabetic complications and suggest potential therapeutic approaches to suppress mtROS. It has been shown that hyperglycemia increases ROS production from mitochondrial electron transport chain and normalizing mitochondrial ROS ameliorates major pathways of hyperglycemic damage, such as activation of polyol pathway, activation of PKC and accumulation of advanced glycation end-products (AGE). Additionally, in subjects with type 2 diabetes, we found a positive correlation between HbA1c and urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), which reflects mitochondrial oxidative damage, and further reported that 8-OHdG was elevated in subjects with diabetic micro- and macro- vascular complications. We recently created vascular endothelial cell-specific manganese superoxide dismutase (MnSOD) transgenic mice, and clarified that overexpression of MnSOD in endothelium could prevent diabetic retinopathy in vivo. Furthermore, we found that metformin and pioglitazone, both of which have the ability to reduce diabetic vascular complications, could ameliorate hyperglycemia-induced mtROS production by the induction of PPAR, coactivator-1, (PGC-1,) and MnSOD and/or activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). We also found that metformin and pioglitazone promote mitochondrial biogenesis through the same AMPK,PGC-1, pathway. Taking these results, mtROS could be the key initiator of and a therapeutic target for diabetic vascular complications. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00013.x, 2010) [source] Perturbation of mitochondrial complex V alters the response to dietary restriction in DrosophilaAGING CELL, Issue 1 2010Sepehr Bahadorani Summary Studies in a broad spectrum of model organisms have reported that dietary restriction (DR) is associated with an increase in mitochondrial electron transport chain (ETC) function. However, the question of whether ETC function is required for DR-mediated longevity remains controversial. Here, we report that genetic and pharmacological interventions that target mitochondrial complex V affect Drosophila lifespan in a nutrient-dependent manner. These findings support a requirement for mitochondrial complex V in DR-mediated longevity in flies. [source] The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 Saccharomyces cerevisiaeAGING CELL, Issue 6 2009Nitish Mittal Summary Integrity of mitochondrial functionality is a key determinant of longevity in several organisms. In particular, reduced mitochondrial ROS (mtROS) production leading to decreased mtDNA damage is believed to be a crucial aspect of longevity. The generation of low mtROS was thought to be due to low mitochondrial oxygen consumption. However, recent studies have shown that higher mitochondrial oxygen consumption could still result in low mtROS and contribute to longevity. This increased mitochondrial efficiency (i.e. low mtROS generated despite high oxygen consumption) was explained as a result of mitochondrial biogenesis, which provides more entry points for the electrons to the electron transport chain (ETC), thereby resulting in low mtROS production. In this study, we provide evidence for the existence of an alternative pathway to explain the observed higher mitochondrial efficiency in the long-lived mrg19 mutant of Saccharomyces cerevisiae. Although we observe similar amounts of mitochondria in mrg19 and wild-type (wt) yeast, we find that mrg19 mitochondria have higher expression of ETC components per mitochondria in comparison with the wt. These findings demonstrate that more efficient mitochondria because of increased ETC per mitochondria can also produce less mtROS. Taken together, our findings provide evidence for an alternative explanation for the involvement of higher mitochondrial activity in prolonging lifespan. We anticipate that similar mechanisms might also exist in eukaryotes including human. [source] A Mutation in Mitochondrial Complex I Increases Ethanol Sensitivity in Caenorhabditis elegansALCOHOLISM, Issue 4 2003Ernst-Bernhard Kayser Background: The gene gas-1 encodes the 49-kDa subunit of complex I of the mitochondrial electron transport chain in Caenorhabditis elegans. A mutation in gas-1 profoundly increases sensitivity to ethanol and decreases complex I-dependent metabolism in mitochondria. Methods: Mitochondria were isolated from wild-type and gas-1 strains of C. elegans. The effects of ethanol on complex I-, II-, and III-dependent oxidative phosphorylation were measured for mitochondria from each strain. Reversibility of the effects of ethanol was determined by measuring oxidative phosphorylation after removal of mitochondria from 1.5 M ethanol. The effects of ethanol on mitochondrial structure were visualized with electron microscopy. Results: We found that ethanol inhibited complex I,, II,, and III,dependent oxidative phosphorylation in isolated wild-type mitochondria at concentrations that immobilize intact worms. It is important to note that the inhibitory effects of ethanol on mitochondria from either C. elegans or rat skeletal muscle were reversible even at molar concentrations. Complex I activity was lower in mitochondria from gas-1 animals than in mitochondria from wild-type animals at equal ethanol concentrations. Complex II activity was higher in gas-1 than in wild-type mitochondria at all concentrations of ethanol. No difference was seen between the strains in the sensitivity of complex III to ethanol. Conclusions: The difference in ethanol sensitivities between gas-1 and wild-type nematodes results solely from altered complex I function. At the respective concentrations of ethanol that immobilize whole animals, mitochondria from each strain of worms displayed identical rates of complex I-dependent state 3 respiration. We conclude that a threshold value of complex I activity controls the transition from mobility to immobility of C. elegans. [source] Kinetics of leaf oxygen uptake represent in planta activities of respiratory electron transport and terminal oxidasesPHYSIOLOGIA PLANTARUM, Issue 1 2007Agu Laisk We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9,1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s,1 in sunflower and 1.8 mm s,1 in aspen. The apparent K0.5(O2) values ranged from 0.33 to 0.67 ,M in sunflower and from 0.33 to 1.1 ,M in aspen, mainly because of the variation of the maximum rate, Vmax (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria. [source] Proteomic analysis of hearts from frataxin knockout mice: Marked rearrangement of energy metabolism, a response to cellular stress and altered expression of proteins involved in cell structure, motility and metabolismPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2008Robert Sutak Abstract A frequent cause of death in Friedreich's ataxia patients is cardiomyopathy, but the molecular alterations underlying this condition are unknown. We performed 2-DE to characterize the changes in protein expression of hearts using the muscle creatine kinase frataxin conditional knockout (KO) mouse. Pronounced changes in protein expression profile were observed in 9,week-old KO mice with severe cardiomyopathy. In contrast, only several proteins showed altered expression in asymptomatic 4,week-old KO mice. In hearts from frataxin KO mice, components of the iron-dependent complex-I and -II of the mitochondrial electron transport chain and enzymes involved in ATP homeostasis (creatine kinase, adenylate kinase) displayed decreased expression. Interestingly, the KO hearts exhibited increased expression of enzymes involved in the citric acid cycle, catabolism of branched-chain amino acids, ketone body utilization and pyruvate decarboxylation. This constitutes evidence of metabolic compensation due to decreased expression of electron transport proteins. There was also pronounced up-regulation of proteins involved in stress protection, such as a variety of chaperones, as well as altered expression of proteins involved in cellular structure, motility and general metabolism. This is the first report of the molecular changes at the protein level which could be involved in the cardiomyopathy of the frataxin KO mouse. [source] Proteomic profiling reveals comprehensive insights into adrenergic receptor-mediated hypertrophy in neonatal rat cardiomyocytesPROTEOMICS - CLINICAL APPLICATIONS, Issue 12 2009Zijian Li Abstract Myocardial adrenergic receptors (ARs) play important roles in cardiac hypertrophy. However, the detailed molecular mechanism of AR-mediated cardiac hypertrophy remains elusive to date. To gain full insight into how ARs are involved in the regulation of cardiac hypertrophy, protein expression profiling was performed with comparative proteomics approach on neonatal rat cardiomyocytes. Forty-six proteins were identified as differentially expressed in hypertrophic cardiomyocytes induced by AR stimulation. To better understand the biological significance of the obtained proteomic data, we utilized the ingenuity pathway analysis tool to construct biological networks and analyze function and pathways that might associate with AR-mediated cardiac hypertrophy. Pathway analysis strongly suggested that ROS may be involved in the development of AR-mediated cardiac hypertrophy, which was then confirmed by further experimentation. The results showed that a marked increase in ROS production was detected in AR-mediated cardiac hypertrophy and blocking of ROS production significantly inhibited AR-mediated cardiac hypertrophy. We further proved that the ROS production was through NADPH oxidase or the mitochondrial electron transport chain and this ROS accumulation resulted in activation of extracellular signal-regulated kinase 1/2 leading to AR-mediated cardiac hypertrophy. These experimental results support the hypothesis, from the ingenuity pathway analysis, that AR-mediated cardiac hypertrophy is associated with the dysregulation of a complicated oxidative stress-regulatory network. In conclusion, our results provide a basis for understanding the detailed molecular mechanisms of AR-mediated cardiac hypertrophy. [source] Impact of oxidative stress on lung diseasesRESPIROLOGY, Issue 1 2009Hee Sun PARK ABSTRACT Reactive oxygen species (ROS) are products of normal cellular metabolism and are known to act as second messengers. Under physiological conditions, ROS participate in maintenance of cellular ,redox homeostasis' in order to protect cells against oxidative stress through various redox-regulatory mechanisms. Overproduction of ROS, most frequently due to excessive stimulation of either reduced nicotinamide adenine dinucleotide phosphate by cytokines or the mitochondrial electron transport chain and xanthine oxidase, results in oxidative stress. Oxidative stress is a deleterious process that leads to lung damage and consequently to various disease states. Knowledge of the mechanisms of ROS regulation could lead to the pharmacological manipulation of antioxidants in lung inflammation and injury. [source] Can coenzyme Q10 improve vascular function and blood pressure?BIOFACTORS, Issue 1-4 2003Potential for effective therapeutic reduction in vascular oxidative stress Abstract Coenzyme Q10 (CoQ) is an endogenously synthesised compound that acts as an electron carrier in the mitochondrial electron transport chain. The presence of adequate tissue concentrations of CoQ may be important in limiting oxidative and nitrosative damage in vivo. Oxidative and nitrosative stress are likely to be elevated in conditions such as diabetes and hypertension. In these conditions elevated oxidative and nitrosative stress within the arterial wall may contribute to increased blood pressure and vascular dysfunction. The major focus of this review is the potential of CoQ to improve vascular function and lower blood pressure. Although there is substantial indirect support for the putative mechanism of effect of CoQ on the vascular system, to date there is little direct support for an effect of CoQ on in vivo markers of oxidative or nitrosative stress. The limited data available from studies in animal models and from human intervention studies are generally consistent with a benefit of CoQ on vascular function and blood pressure. The observed effects of CoQ on these endpoints are potentially important therapeutically. However, before any firm clinical recommendations can be made about CoQ supplementation, further intervention studies in humans are needed to investigate the effects of CoQ on vascular function, blood pressure and cardiovascular outcomes. The particularly relevant groups of patients for these studies are those with insulin resistance, type 2 diabetes, hypertension and the metabolic syndrome. [source] Adaptations Of Skeletal Muscle To Prolonged, Intense Endurance TrainingCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2002John A Hawley SUMMARY 1. Endurance exercise induces a variety of metabolic and morphological responses/adaptations in skeletal muscle that function to minimize cellular disturbances during subsequent training sessions. 2. Chronic adaptations in skeletal muscle are likely to be the result of the cumulative effect of repeated bouts of exercise, with the initial signalling responses leading to such adaptations occurring after each training session. 3. Recently, activation of the mitogen-activated protein kinase signalling cascade has been proposed as a possible mechanism involved in the regulation of many of the exercise-induced adaptations in skeletal muscle. 4. The protein targets of AMP-activated protein kinase also appear to be involved in both the regulation of acute metabolic responses and chronic adaptations to exercise. 5. Endurance training is associated with an increase in the activities of key enzymes of the mitochondrial electron transport chain and a concomitant increase in mitochondrial protein concentration. These morphological changes, along with increased capillary supply, result in a shift in trained muscle to a greater reliance on fat as a fuel with a concomitant reduction in glycolytic flux and tighter control of acid,base status. Taken collectively, these adaptations result in an enhanced performance capacity. [source] |