Mitochondrial DNA Sequencing (mitochondrial + dna_sequencing)

Distribution by Scientific Domains


Selected Abstracts


Palaeopathological and palaeogenetic study of 13 cases of developmental dysplasia of the hip with dislocation in a historical population from southern France

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 1 2007
B. Mafart
Abstract Dislocation of the hip can be consecutive to developmental dysplasia of the hip that is linked to a complex set of genetic and mechanical factors. The purpose of this report is to describe 13 cases of complete dysplastic hip dislocation observed in the skeletal remains of nine women exhumed from an historical gravesite dating from the 5th to 17th centuries in southern France. Despite the size of this palaeopathological series, which is the largest study published to date, findings indicate that the prevalence of hip dislocation in this historical sample was still lower than in some French areas at the beginning of the 20th century. Mitochondrial DNA sequencing demonstrated possible kinship only between two women, i.e. one who died in the period from the 11th to 13th centuries and another who died in the period from the 16th to 17th centuries. It is suggested that the tight swaddling of young infants in France up to the end of the 19th century could have been a predisposing factor for this highly debilitating disorder. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Ecological diversification in a group of Indomalayan pitvipers (Trimeresurus): convergence in taxonomically important traits has implications for species identification

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2004
K. L. Sanders
Abstract We analyse molecular and phenotypic evolution in a group of taxonomically problematic Indomalayan pitvipers, the Trimeresurus sumatranus group. Mitochondrial DNA sequencing provides a well-resolved phylogeny, with each species representing a distinct lineage. Multivariate morphological analysis reveals a high level of phenotypic differentiation, which is congruent between the sexes but does not reflect phylogenetic history. An adaptive explanation for the observed pattern of differentiation is supported by independent contrasts analysis, which shows significant correlations between current ecology and the characters that most account for the variation between taxa, including those that are presently used to identify the species. Reduced precipitation and altitude, and increased temperature, are correlated with higher numbers of scales on the head, body and tail. It is hypothesized that scale number plays an important role in heat and water exchange by influencing the area of exposed of interstitial skin, and that colour pattern variation reflects selection pressures involving camouflage and thermoregulation. Ecological convergence in traits used for classification is found to have important implications for species identification where taxa are distributed over varying environments. [source]


A mitochondrial ATPase 6 mutation is associated with Leigh syndrome in a family and affects proton flow and adenosine triphosphate output when modeled in Escherichia coli

ACTA PAEDIATRICA, Issue 2004
R Carrozzo
A multidisciplinary strategy was used to identify the molecular defect in a family with Leigh syndrome (LS). The propositus presented severe developmental delay, an ataxic-spastic gait and seizures. She died at 3.5 y of age from cardiorespiratory arrest. Postmortem examination disclosed pathological features typical of LS. A 12-y-old sister is affected with the same disease. Respiratory chain enzyme complex activities in skeletal muscle biopsy were normal. Adenosine triphosphate (ATP) synthesis during oxidative phosphorylation in skin fibroblasts mitochondria showed a severely hampered ATP production. Mitochondrial DNA sequencing revealed a new mutation in the ATPase 6 gene (T9176G). Site-directed mutagenesis in Escherichia coli strains was used to measure H+ pumping and ATP synthesis. Results were comparable to findings obtained in human cells. These data corroborate the use of E. coli strains as a feasible "animal" model for functional studies in pathogenic mutations of the ATPase 6 gene. [source]


Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses

JOURNAL OF BIOGEOGRAPHY, Issue 7 2004
Loredana Carisio
Abstract Aim, To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location, Europe (mostly Italy). Methods, We collected adult males from dung pats from 15 Italian localities over the period 2000,2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions, The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species. [source]


Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis

MOLECULAR ECOLOGY, Issue 10 2006
A. VERARDI
Abstract Occasional crossbreeding between free-ranging domestic dogs and wild wolves (Canis lupus) has been detected in some European countries by mitochondrial DNA sequencing and genotyping unlinked microsatellite loci. Maternal and unlinked genomic markers, however, might underestimate the extent of introgressive hybridization, and their impacts on the preservation of wild wolf gene pools. In this study, we genotyped 220 presumed Italian wolves, 85 dogs and 7 known hybrids at 16 microsatellites belonging to four different linkage groups (plus four unlinked microsatellites). Population clustering and individual assignments were performed using a Bayesian procedure implemented in structure 2.1, which models the gametic disequilibrium arising between linked loci during admixtures, aiming to trace hybridization events further back in time and infer the population of origin of chromosomal blocks. Results indicate that (i) linkage disequilibrium was higher in wolves than in dogs; (ii) 11 out of 220 wolves (5.0%) were likely admixed, a proportion that is significantly higher than one admixed genotype in 107 wolves found previously in a study using unlinked markers; (iii) posterior maximum-likelihood estimates of the recombination parameter r revealed that introgression in Italian wolves is not recent, but could have continued for the last 70 (± 20) generations, corresponding to approximately 140,210 years. Bayesian clustering showed that, despite some admixture, wolf and dog gene pools remain sharply distinct (the average proportions of membership to wolf and dog clusters were Qw = 0.95 and Qd = 0.98, respectively), suggesting that hybridization was not frequent, and that introgression in nature is counteracted by behavioural or selective constraints. [source]