Mitochondrial DNA Deletion (mitochondrial + dna_deletion)

Distribution by Scientific Domains


Selected Abstracts


Different pathophysiological mechanisms of intramitochondrial iron accumulation in acquired and congenital sideroblastic anemia caused by mitochondrial DNA deletion

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 2 2006
Thomas Matthes
Abstract:, Sideroblastic anemias (SA) are characterized by iron accumulation in the mitochondria of erythroblasts. Although we have evidence of mitochondrial gene alterations in sporadic congenital cases, the origin of acquired forms [refractory anemia with ring sideroblasts (RARS)], is still largely unknown. Here, we report the analysis of respiratory chain function in a patient with a large mitochondrial deletion and in patients with RARS. A young boy with SA showed symptoms typical of a mitochondrial disease with metabolic acidosis, muscle weakness and cerebral involvement. His bone marrow DNA was analyzed for the presence of mitochondrial deletions. We found a new mitochondrial (mt)DNA deletion spanning 3614 bp and including all the mt genes encoding complex IV, plus ATPase 6 and 8, and several transfer (t)RNAs. All tissues analyzed (liver, skeletal muscle, brain, pancreas) showed a heteroplasmic distribution of this mutant DNA. Bone marrow homogenates were obtained from five patients with RARS and from three patients with normal bone marrow and respiratory chain function assayed by spectrophotometric analysis. Cytochrome c oxidase (CCO) activity was greatly reduced in the patient's bone marrow. In contrast, CCO activity and global respiratory chain function were conserved in patients with RARS. We conclude that deficient CCO activity secondary to mtDNA deletions is related to intramitochondrial iron accumulation, as in our patient or in those with Pearson's syndrome, whereas other mechanisms, e.g. nuclear DNA mutations, have to be proposed to be involved in the acquired forms of SA. [source]


Assessment of the "common" 4.8-kb mitochondrial DNA deletion and identification of several closely related deletions in the dorsal root ganglion of aging and streptozotocin rats

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2002
Kim K. Nickander
Abstract The identification of several mitochondrial DNA (mtDNA) deletions and the accumulation of the "common" 4.8-kb mitochondrial DNA deletion (mtDNA4834) with aging and experimental streptozotocin-induced diabetes (STZ) were studied in the rat dorsal root ganglion (DRG). Twenty-one mtDNA deletions, including mtDNA4834, were identified in rat L4-L6 DRG mtDNA of 15-month-old Spraque-Dawley rats with 13 months of STZ and age-matched controls. These deletions were flanked by breakpoints that ranged from 16-bp direct repeats to no direct repeats. The sciatic nerve contained undetectable levels of mtDNA deletions. Levels of mtDNA4834 in rat DRG mtDNA significantly accumulated with age at a rate much higher than those reported in the brain, yet were not statistically different in STZ. Southern blot analysis demonstrated no significant accumulation of the total amount of mtDNA deletions in STZ over age-matched controls. The accumulation of mtDNA4834 has not been studied in rat peripheral nerve tissue. Our identification of several mtDNA deletions with and without direct repeats at their breakpoint support the hypothesis that deletions can occur by both the slip-replication model and random recombination. Although there is a significant increase in accumulation of mtDNA4834 associated with aging, the lack of significant accumulations of mtDNA deletions in STZ over age-matched controls indicates that this type of mtDNA damage is likely not a major alteration in STZ, although the changes could be confined to a small population of neurons that undergo apoptosis between 8 and 15 months. [source]


Age-Related Mitochondrial DNA Mutations in the Human Larynx

THE LARYNGOSCOPE, Issue 12 2000
Jose M. Manaligod MD
Abstract Objective To determine whether age-related mitochondrial DNA mutations occur in the human larynx. Study Design Genetic study of cadaveric larynx specimens. Methods Vocal fold mucosa, thyroarytenoid muscle, and cricoarytenoid joint tissue were harvested from 13 fresh postmortem larynges (age range, 2 d,82 y). DNA was extracted from each sample, and the polymerase chain reaction (PCR) was used to amplify a target DNA sequence resulting from the common age-associated, 4977,base-pair (bp) mitochondrial DNA deletion. PCR products were visualized by agarose gel electrophoresis. Automated sequencing determined the sequence of identified PCR products. Subjects Thirteen cadaveric larynges were obtained through the University of Kentucky Medical Center (Lexington, KY). Specimens from patients with a history of head and neck cancer, previous laryngeal trauma, or surgery were excluded. Results Strongly positive bands were identified in samples from three individuals. Weaker bands were seen in samples from four other samples. No band was noted from the two pediatric larynges. Different band patterns were seen among the three different tissue sites in the larynges with positive PCR products, but no consistent pattern was seen. Sequencing of the identified PCR products from selected samples confirmed that they were products of the age-associated, 4977-bp mitochondrial DNA deletion. Conclusions An age-associated mitochondrial DNA deletion was detected in several postmortem human larynges. Its presence seemed to increase in appearance with age. In the larynges in which the deletion occurred, there were individual regional differences in the occurrence of the deletion, but no consistent pattern was noted across all individuals who carried the deletion. [source]


PRECLINICAL STUDY: Ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A

ADDICTION BIOLOGY, Issue 2 2009
Ema Alves
ABSTRACT The administration of a neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ,ecstasy') to the rat results in mitochondrial oxidative damage in the central nervous system, namely lipid and protein oxidation and mitochondrial DNA deletions with subsequent impairment of the correspondent protein expression. Although these toxic effects were shown to be prevented by monoamine oxidase B inhibition, the role of monoamine oxidase A (MAO-A) in MDMA-mediated mitochondrial damage remains to be evaluated. Thus, the aim of the present study was to clarify the potential interference of a specific inhibition of MAO-A by clorgyline, on the deleterious effects produced by a binge administration of a neurotoxic dose of MDMA (10 mg MDMA/kg of body weight, intraperitoneally, every 2 hours in a total of four administrations) to an adolescent rat model. The parameters evaluated were mitochondrial lipid peroxidation, protein carbonylation and expression of the respiratory chain protein subunits II of reduced nicotinamide adenine dinucleotide dehydrogenase (NDII) and I of cytochrome oxidase (COXI). Considering that hyperthermia has been shown to contribute to the neurotoxic effects of MDMA, another objective of the present study was to evaluate the body temperature changes mediated by MDMA with a MAO-A selective inhibition by clorgyline. The obtained results demonstrated that the administration of a neurotoxic binge dose of MDMA to an adolescent rat model previously treated with the specific MAO-A inhibitor, clorgyline, resulted in synergistic effects on serotonin- (5-HT) mediated behaviour and body temperature, provoking high mortality. Inhibition of MAO-A by clorgyline administration had no protective effect on MDMA-induced alterations on brain mitochondria (increased lipid peroxidation, protein carbonylation and decrease in the expression of the respiratory chain subunits NDII and COXI), although it aggravated MDMA-induced decrease in the expression of COXI. These results reinforce the notion that the concomitant use of MAO-A inhibitors and MDMA is counter indicated because of the resulting severe synergic toxicity. [source]


Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study

EUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2005
C. Kornblum
The purpose of our randomized, double-blind, placebo-controlled crossover study in 15 patients with chronic progressive external ophthalmoplegia (CPEO) or Kearns,Sayre syndrome (KSS) because of single large-scale mitochondrial (mt) DNA deletions was to determine whether oral creatine (Cr) monohydrate can improve skeletal muscle energy metabolism in vivo. Each treatment phase with Cr in a dosage of 150 mg/kg body weight/day or placebo lasted 6 weeks. The effect of Cr was estimated by phosphorus-31 magnetic resonance spectroscopy (31P-MRS), clinical and laboratory tests. 31P-MRS analysis prior to treatment showed clear evidence of severe mitochondrial dysfunction. However, there were no relevant changes in 31P-MRS parameters under Cr. In particular, phosphocreatine (PCr)/ATP at rest did not increase, and there was no facilitation of post-exercise PCr recovery. Clinical scores and laboratory tests did not alter significantly under Cr, which was tolerated without major side-effects in all patients. Cr supplementation did not improve skeletal muscle oxidative phosphorylation in our series of patients. However, one explanation for our negative findings may be the short study duration or the limited number of patients included. [source]


Detrimental deletions: mitochondria, aging and Parkinson's disease

BIOESSAYS, Issue 10 2006
Saskia Biskup
As individuals enter their 80s, they are inevitably confronted with the problem of neuronal loss in the brain. The incidence of the common movement disorder ,mild parkinsonian signs' (MPS) is approximately 50% over the age of 85 years. It has long been known that the loss of dopaminergic neurons in the substantia nigra pars compacta is a neuropathological hallmark of Parkinson's disease (PD). Recently, two papers1,2 present clear evidence for a high burden of mitochondrial DNA deletions within substantia nigra neurons in aged individuals and individuals with PD, pointing towards a common pathway inevitably leading to neuronal dysfunction and death. BioEssays 28: 963,967, 2006. © 2006 Wiley Periodicals, Inc. [source]