Mitochondrial Abnormalities (mitochondrial + abnormality)

Distribution by Scientific Domains


Selected Abstracts


A link between endoplasmic reticulum stress-induced , -cell apoptosis and the group VIA Ca2+ -independent phospholipase A2 (iPLA2,)

DIABETES OBESITY & METABOLISM, Issue 2010
X. Lei
Endoplasmic reticulum (ER) stress is becoming recognized as an important contributing factor in various diseases, including diabetes mellitus. Prolonged ER stress can cause , -cell apoptosis; however, the underlying mechanism(s) that contribute to this process are not well understood. Early reports suggested that arachidonic acid metabolites and a Ca2+ -independent phospholipase A2 (iPLA2) activity play a role in , -cell apoptosis. The PLA2 family of enzymes catalyse the hydrolysis of the sn -2 substituent (i.e. arachidonic acid) of membrane phospholipids. In light of our findings that the pancreatic islet , -cells are enriched in arachidonate-containing phospholipids and express the group VIA iPLA2,, we considered the possibility that iPLA2, participates in ER stress-induced , -cell apoptosis. Our work revealed a novel mechanism, involving ceramide generation and triggering of mitochondrial abnormalities, by which iPLA2, participates in the , -cell apoptosis process. Here, we review our evidence linking ER stress, , -cell apoptosis and iPLA2,. Continued studies in this area will increase our understanding of the contribution of iPLA2, to the evolution of diabetes mellitus and will further our knowledge of factors that influence , -cell health in diabetes mellitus and identify potential targets for future therapeutic interventions to prevent , -cell death. [source]


Mitochondrial function and endocrine diseases

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2007
R. Stark
Abstract Mitochondria are fundamental for oxidative energy production and impairment of their functionality can lead to reduced ATP synthesis and contribute to initiation of apoptosis. Endocrine tissues critically rely on oxidative phosphorylation so that mitochondrial abnormalities may either be causes or consequences of diminished hormone production or action. Abnormalities typical for diseases caused by mitochondrial DNA mutations such as Kearns,Sayre syndrome or mitochondrial encephalomyopathy, lactic acidosis, and stroke,like episodes syndrome are also seen in certain endocrine diseases. Lack or excess of thyroid hormones, major ubiquitous regulators of mitochondrial content and activity, cause muscular abnormalities and multisystem disorders. Mitochondria are a further prerequisite for steroidogenesis as well as insulin secretion and action. Recent studies showed that reduced mitochondrial ATP synthesis in skeletal muscle is a feature of certain hereditary and acquired forms of insulin resistance and diabetes mellitus. Finally, ageing is not only accompanied by various degrees of hormonal deficiency and insulin resistance but is also associated with a progressive decline of mitochondrial number and function. Future research is needed to examine whether mitochondrial abnormalities are the cause or consequence of ageing and frequent metabolic diseases such as obesity and type 2 diabetes mellitus, and to address mitochondria as a target for novel therapeutic regimes. [source]


Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases

JOURNAL OF NEUROCHEMISTRY, Issue 2 2008
Damien J. Keating
Abstract A common feature in the early stages of many neurodegenerative diseases lies in mitochondrial dysfunction, oxidative stress, and reduced levels of synaptic transmission. Many genes associated with neurodegenerative diseases are now known to regulate either mitochondrial function, redox state, or the exocytosis of neurotransmitters. Mitochondria are the primary source of reactive oxygen species and ATP and control apoptosis. Mitochondria are concentrated in synapses and significant alterations to synaptic mitochondrial localization, number, morphology, or function can be detrimental to synaptic transmission. Mitochondrial by-products are capable of regulating various steps of neurotransmission and mitochondrial dysfunction and oxidative stress occur in the early stages of many neurodegenerative diseases. This mini-review will highlight the prospect that mitochondria regulates synaptic exocytosis by controlling synaptic ATP and reactive oxygen species levels and that dysfunctional exocytosis caused by mitochondrial abnormalities may be a common underlying phenomenon in the initial stages of some human neurodegenerative diseases. [source]


Mitochondrial dysfunction early after traumatic brain injury in immature rats

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Courtney L. Robertson
Abstract Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H2O2 production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (,4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI. [source]


Bioenergetics in the pathogenesis of neurodegeneration

JOURNAL OF NEUROCHEMISTRY, Issue 2001
M. Flint Beal
Evidence implicating both mitochondria and bioenergetics as playing a crucial role in necrotic and apoptotic cell death is rapidly accumulating. Mitochondria are essential in controlling specific apoptosis cell death pathways and they are the major source of free radicals in the cell. Direct evidence for a role of mitochondria in neurodegenerative diseases comes from studies in Friedreich's Ataxia. Mutations in frataxin lead to an accumulation of iron within mitochondria. We found a three-fold increase in a marker of oxidative damage to DNA in the urine of patients with Friedreich's Ataxia. There is evidence for mitochondrial defects in patients with amyotrophic lateral sclerosis (ALS). There are mitochondrial abnormalities in liver biopsies and muscle biopsies from individuals with sporadic ALS. Muscle biopsies have shown reduced complex I activity in patients with sporadic ALS. A study of ALS cybrids showed a significant decrease in complex I activity as well as trends towards reduced complex 3 and 4 activities. We found increased levels of 8-hydroxy-2-deoxyguanosine, a marker of oxidative damage to DNA in the plasma, urine and CSF of sporadic ALS patients and increased numbers of point mutations in mtDNA of ALS spinal cord tissue. There is mitochondrial vacuolization in transgenic mouse models of ALS. We found substantial evidence for mitochondrial dysfunction in Huntington's Disease (HD). In HD postmortem brain tissue, there are significant reductions in complex 2, 3 activity. We also demonstrated increased brain lactate concentrations as well as reduced phosphocreatine to inorganic phosphate ratio in the resting muscle of patients with HD. More recent studies have demonstrated that there is abnormal depolarization of mitochondria of HD lymphoblasts, which directly correlates with CAG repeat length. There are reductions in ATP production in muscle are both presymptomatic and symptomatic HD patients. Transgenic mouse models of HD show significant reductions in N-acetylaspartate concentrations, which precede the onset of neuronal degeneration. We investigated a number of therapeutic interventions in both transgenic mouse models of ALS and HD. In transgenic ALS mice we found that oral administration of creatine dose-dependently extends survival and reduces the neuronal degeneration in the spinal cord. We found modest protection with ginkgo biloba and lipoic acid. In the HD mice we found significant improvement with oral administration of creatine in two different transgenic mouse models. Creatine not only extended survival but it also improved motor performance, delayed weight loss and attenuated striatal atrophy. Creatine significantly attenuated reductions in N-acetylaspartate concentrations as assessed using magnetic resonance spectroscopy. We also found significant neuroprotective effects with dichloroacetate, which stimulates pyruvate dehydrogenase. These findings implicate bioenergetic dysfunction in transgenic mouse models of both ALS and HD, and they suggest several novel therapeutic strategies aimed at energy replenishment. [source]


The Role of Mitochondria in the Pathogenesis of Neurodegenerative Diseases

BRAIN PATHOLOGY, Issue 3 2000
Giovanni Manfredim MD
A growing body of evidence indicates that mitochondrial dysfunction may play an important role in the pathogenesis of many neurodegenerative disorders. Because mitochondrial metabolism is not only the principal source of high energy intermediates, but also of free radicals, it has been suggested that inherited or acquired mitochondrial defects could be the cause of neuronal degeneration as a consequence of energy defects and oxidative damage. Mitochondrial respiratory chain dysfunction has been reported in association with primary mitochondrial DNA abnormalities, and also as a consequence of mutations in nuclear genes directly involved in mitochondrial functions, such as SURF1, frataxin, and paraplegin. Defects of oxidative phosphorylation and increased free radical production have also been observed in diseases that are not due to primary mitochondrial abnormalities. In these cases, the mitochondrial dysfunction is likely to be an epiphenomenon, which, nevertheless, could be of importance in precipitating a cascade of events leading to cell death. In either case, understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could be important for the development of therapeutic strategies in these disorders. [source]