Mitigation Strategies (mitigation + strategy)

Distribution by Scientific Domains


Selected Abstracts


Numbers and transported state of Escherichia coli in runoff direct from fresh cowpats under simulated rainfall,

LETTERS IN APPLIED MICROBIOLOGY, Issue 2 2006
R.W. Muirhead
Abstract Aims:, To investigate the number of Escherichia coli in runoff derived directly from fresh cowpats and to determine if the E. coli are attached to dense particles, in flocs or as individual cells. Methods and Results:, Three cowpats were collected monthly from the same farm for 13 months and the number of E. coli in them estimated. A rainfall simulator was used to generate runoff from the individual cowpats, which was fractioned to determine the transported state of any E. coli present. The number of E. coli in the cowpat runoff was highly variable and was strongly correlated with the number of E. coli in the cowpat. Only a small percentage (approx. 8%) of the E. coli in runoff were attached to dense (>1·3 g ml,1) particles and there was no evidence of flocculation of the cells. Conclusions:,Escherichia coli in runoff from cowpats are transported predominantly as individual cells. Significance and Impact of the Study:, Mitigation strategies to reduce the number of faecal bacteria in overland flow from agricultural land need to be designed to trap single bacterial cells. [source]


Destocking as a Drought,mitigation Strategy: Clarifying Rationales and Answering Critiques

DISASTERS, Issue 3 2002
John Morton
The idea of externally assisted emergency destocking of pastoralists has gained currency in recent years: increasing the incentives for pastoralists to sell animals, or removing the constraints to selling animals in the early stages of drought. We identify two separate rationales put forward by proponents of destocking: environmental benefits and purchasing power/welfare benefits. We consider whether specific recent critiques of ,new range ecology' and specifically of ,tracking policies' do in fact provide arguments against emergency destocking in pastoralist areas. We illustrate some of these themes with a case study of a successful destocking exercise in northern Kenya where a very specific form of support was requested and received by pastoralists themselves. The sorts of destocking that work are likely to have significant effects on pastoralist purchasing power at key points of the drought cycle, but minimal effects on the environment. Clarifying these points will make it easier to promote destocking as a drought,mitigation policy. [source]


Gauging the societal impacts of natural disasters using a capability approach

DISASTERS, Issue 3 2010
Paolo Gardoni
There is a widely acknowledged need for a single composite index that provides a comprehensive picture of the societal impact of disasters. A composite index combines and logically organizes important information policy-makers need to allocate resources for the recovery from natural disasters; it can also inform hazard mitigation strategies. This paper develops a Disaster Impact Index (DII) to gauge the societal impact of disasters on the basis of the changes in individuals' capabilities. The DII can be interpreted as the disaster impact per capita. Capabilities are dimensions of individual well-being and refer to the genuine opportunities individuals have to achieve valuable states and activities (such as being adequately nourished or being mobile). After discussing the steps required to construct the DII, this article computes and compares the DIIs for two earthquakes of similar magnitude in two societies at different levels of development and of two disasters (earthquake and wind storm) in the same society. [source]


Social vulnerability and the natural and built environment: a model of flood casualties in Texas

DISASTERS, Issue 4 2008
Sammy Zahran
Studies on the impacts of hurricanes, tropical storms, and tornados indicate that poor communities of colour suffer disproportionately in human death and injury., Few quantitative studies have been conducted on the degree to which flood events affect socially vulnerable populations. We address this research void by analysing 832 countywide flood events in Texas from 1997,2001. Specifically, we examine whether geographic localities characterised by high percentages of socially vulnerable populations experience significantly more casualties due to flood events, adjusting for characteristics of the natural and built environment. Zero-inflated negative binomial regression models indicate that the odds of a flood casualty increase with the level of precipitation on the day of a flood event, flood duration, property damage caused by the flood, population density, and the presence of socially vulnerable populations. Odds decrease with the number of dams, the level of precipitation on the day before a recorded flood event, and the extent to which localities have enacted flood mitigation strategies. The study concludes with comments on hazard-resilient communities and protection of casualty-prone populations. [source]


Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2007
Boyd A. McKew
Summary There is little information on how different strategies for the bioremediation of marine oil spills influence the key indigenous hydrocarbon-degrading bacteria (hydrocarbonoclastic bacteria, HCB), and hence their remediation efficacy. Therefore, we have used quantitative polymerase chain reaction to analyse changes in concentrations of HCB in response to intervention strategies applied to experimental microcosms. Biostimulation with nutrients (N and P) produced no measurable increase in either biodegradation or concentration of HCB within the first 5 days, but after 15 days there was a significant increase (29%; P < 0.05) in degradation of n -alkanes, and an increase of one order of magnitude in concentration of Thalassolituus (to 107 cells ml,1). Rhamnolipid bioemulsifier additions alone had little effect on biodegradation, but, in combination with nutrient additions, provoked a significant increase: 59% (P < 0.05) more n -alkane degradation by 5 days than was achieved with nutrient additions alone. The very low Alcanivorax cell concentrations in the microcosms were hardly influenced by addition of nutrients or bioemulsifier, but strongly increased after their combined addition, reflecting the synergistic action of the two types of biostimulatory agents. Bioaugmentation with Thalassolituus positively influenced hydrocarbon degradation only during the initial 5 days and only of the n -alkane fraction. Bioaugmentation with Alcanivorax was clearly much more effective, resulting in 73% greater degradation of n -alkanes, 59% of branched alkanes, and 28% of polynuclear aromatic hydrocarbons, in the first 5 days than that obtained through nutrient addition alone (P < 0.01). Enhanced degradation due to augmentation with Alcanivorax continued throughout the 30-day period of the experiment. In addition to providing insight into the factors limiting oil biodegradation over time, and the competition and synergism between HCB, these results add weight to the use of bioaugmentation in oil pollution mitigation strategies. [source]


Estimating annual N2O emissions from agricultural soils in temperate climates

GLOBAL CHANGE BIOLOGY, Issue 10 2005
Caroline Roelandt
Abstract The Kyoto protocol requires countries to provide national inventories for a list of greenhouse gases including N2O. A standard methodology proposed by the Intergovernmental Panel on Climate Change (IPCC) estimates direct N2O emissions from soils as a constant fraction (1.25%) of the nitrogen input. This approach is insensitive to environmental variability. A more dynamic approach is needed to establish reliable N2O emission inventories and to propose efficient mitigation strategies. The objective of this paper is to develop a model that allows the spatial and temporal variation in environmental conditions to be taken into account in national inventories of direct N2O emissions. Observed annual N2O emission rates are used to establish statistical relationships between N2O emissions, seasonal climate and nitrogen-fertilization rate. Two empirical models, MCROPS and MGRASS, were developed for croplands and grasslands. Validated with an independent data set, MCROPS shows that spring temperature and summer precipitation explain 35% of the variance in annual N2O emissions from croplands. In MGRASS, nitrogen-fertilization rate and winter temperature explain 48% of the variance in annual N2O emissions from grasslands. Using long-term climate observations (1900,2000), the sensitivity of the models with climate variability is estimated by comparing the year-to-year prediction of the model to the precision obtained during the validation process. MCROPS is able to capture interannual variability of N2O emissions from croplands. However, grassland emissions show very small interannual variations, which are too small to be detectable by MGRASS. MCROPS and MGRASS improve the statistical reliability of direct N2O emissions compared with the IPCC default methodology. Furthermore, the models can be used to estimate the effects of interannual variation in climate, climate change on direct N2O emissions from soils at the regional scale. [source]


Spatial and temporal dynamics of methane emissions from agricultural sources in China

GLOBAL CHANGE BIOLOGY, Issue 1 2001
Peter H. Verburg
Summary Agricultural activities contribute significantly to the global methane budget. Agricultural sources of methane are influenced by land-use change, including changes in agricultural area, livestock keeping and agricultural management practices. A spatially explicit inventory of methane emissions from agriculture is made for China taking the interconnections between the different agricultural sources into account. The influence of land-use change on methane emissions is studied by linking a dynamic land-use change model with emission calculations. The land-use change model calculates changes in rice area and livestock numbers for a base-line scenario. Emissions are calculated for 1991 based on land-use statistics and for 2010 based on simulated changes in land-use patterns. Emissions from enteric fermentation and manure management are based on emission factors, while emissions from rice paddies involve the calculation of total organic carbon added to rice paddy soils and assume that a constant fraction is emitted as methane. Spatial patterns of emissions are presented for the different sources. For the land-use scenario considered it is expected that total methane emissions from agricultural sources in China increase by 11% while the relative contribution of rice fields to the emission decreases. Emissions from manure management are expected to become more important. These results indicate that agencies should anticipate changes in source strengths as a consequence of land-use changes when proposing mitigation strategies and future national greenhouse gas budgets. [source]


Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM

HYDROLOGICAL PROCESSES, Issue 9 2008
Anthony S. Kiem
Abstract Analysis of future Japan Meteorological Agency atmospheric general circulation model (JMA AGCM) based climate scenarios for the Mekong River basin (MRB) indicates that annual mean precipitation will increase in the 21st century (2080,2099) by 4·2% averaged across the basin, with the majority of this increase occurring over the northern MRB (i.e. China). Annual mean temperatures are also projected to increase by approximately 2·6 °C (averaged across the MRB). As expected, these changes also lead to significant changes in the hydrology of the MRB. All MRB subbasins will experience an increase in the number of wet days in the ,future' and, importantly for sustainable water resources management and the mitigation of extreme events (e.g. floods and droughts), the magnitude and frequency of what are now considered extreme events are also expected to increase resulting in increased risk of flooding, but a reduction in the likelihood of droughts/low-flow periods,assuming water extraction is kept at a sustainable level. Despite the fact that the climate change impact projections are associated with significant uncertainty, it is important to act now and put in place policies, infrastructure and mitigation strategies to protect against the increased flooding that could occur. In addition, despite this study indicating a decrease in the number of ,low-flow' days, across most of the MRB, further analysis is needed to determine whether the reduction in low-flow days is enough to compensate for (and sustain) the rapidly increasing population and development in the MRB. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Ice regime of the lower Peace River and ice-jam flooding of the Peace-Athabasca Delta

HYDROLOGICAL PROCESSES, Issue 19 2006
Spyros Beltaos
Abstract The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. Beginning in the mid-1970s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide a habitat for aquatic life in the PAD region. Using archived hydrometric data and in situ observations, the ice regime of the lower Peace is described and quantified, setting the stage for identification of the conditions that lead to ice-jam flooding and replenishment of Delta habitat. The first such condition is the occurrence of a mechanical, as opposed to a thermal, breakup event; second, the river flow should be at least 4000 m3/s; and third, an ice jam should form within the last 50 km of the Peace River. The type of breakup event depends on the freeze-up stage and spring flow. The former has increased as a result of flow regulation, and the latter has decreased owing to changing climatic patterns. Both trends tend to inhibit the occurrence of mechanical breakups and contribute to less frequent ice-jam flooding. Potential mitigation strategies are discussed. Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]


Agricultural land use and Skylark Alauda arvensis: a case study linking a habitat association model to spatially explicit change scenarios

IBIS, Issue 1 2010
NIGEL D. BOATMAN
The development of forward scenarios is a useful method of envisaging the environmental implications of potential changes in land use, as a tool for policy development. In this paper, a spatially explicit case study is used to provide insight into the environmental impacts of Common Agricultural Policy reform on Skylark Alauda arvensis, a species which is widespread on arable farmland, breeds in crops and has declined in recent decades. A generalized linear mixed model was used to estimate Skylark breeding population densities in different crops, using survey data collected from farms in the east of England, supplemented by the literature. Model outputs were then used to predict Skylark densities in an East Anglian Joint Character Area dominated by arable cropping. Predicted densities were mapped at field level using GIS, based on actual cropping derived from Integrated Administration and Control System data collected for the administration of subsidy payments. Three future scenarios were then created, based on expert opinion of potential changes in cropping over the next 5 years, and potential changes in Skylark density mapped on the basis of the predicted changes in cropping patterns. Overall, Skylark densities were predicted to decrease on average by 11,14% under ,market-led' (increasing wheat and oilseed rape, reduced set-aside) and ,energy crop' (5% area under short rotation coppice) scenarios, but remained virtually unchanged under an ,environment-led' (diverse cropping) scenario. The ,market-led' scenario is closest to short-term agricultural trajectories, but wider cultivation of biomass energy crops as modelled under the ,energy crop' scenario could occur in the medium term if energy policies are favourable. Appropriate mitigation strategies therefore need to be implemented if a continued decline in the Skylark population on lowland arable farmland is to be averted. The results provide a readily accessible visualization of the potential impacts of land-use change for policy-makers; similar techniques could be applied to visualize effects of changes arising through other drivers, including climate change. [source]


Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2007
H. J. Fowler
Abstract There is now a large published literature on the strengths and weaknesses of downscaling methods for different climatic variables, in different regions and seasons. However, little attention is given to the choice of downscaling method when examining the impacts of climate change on hydrological systems. This review paper assesses the current downscaling literature, examining new developments in the downscaling field specifically for hydrological impacts. Sections focus on the downscaling concept; new methods; comparative methodological studies; the modelling of extremes; and the application to hydrological impacts. Consideration is then given to new developments in climate scenario construction which may offer the most potential for advancement within the ,downscaling for hydrological impacts' community, such as probabilistic modelling, pattern scaling and downscaling of multiple variables and suggests ways that they can be merged with downscaling techniques in a probabilistic climate change scenario framework to assess the uncertainties associated with future projections. Within hydrological impact studies there is still little consideration given to applied research; how the results can be best used to enable stakeholders and managers to make informed, robust decisions on adaptation and mitigation strategies in the face of many uncertainties about the future. It is suggested that there is a need for a move away from comparison studies into the provision of decision-making tools for planning and management that are robust to future uncertainties; with examination and understanding of uncertainties within the modelling system. Copyright © 2007 Royal Meteorological Society [source]


Psychrophilic and psychrotrophic clostridia: sporulation and germination processes and their role in the spoilage of chilled, vacuum-packaged beef, lamb and venison

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 8 2010
Katharine H. Adam
Summary Spoilage of beef, lamb and venison by psychrophilic and psychrotrophic clostridial species renders meat unacceptable resulting in financial losses and reduced consumer confidence. A number of clostridial strains, including Clostridium algidicarnis, Clostridium algidixylanolyticum, Clostridium estertheticum, Clostridium frigidicarnis and Clostridium gasigenes, have been implicated in red meat spoilage. Unlike other spoilers, these clostridia are able to grow in anaerobic conditions and at chilled temperatures (some at ,1.5 °C the optimal storage temperature for chilled red meat). The spoilage they cause is characterised by softening of the meat, production of large amounts of drip (exudates), offensive odours and in the case of C. estertheticum and C. gasigenes production of gas. Spoilage occurs following the introduction of clostridial spores into vacuum packages during processing. Germination of spores is necessary for the growth of vegetative cells, which cause spoilage. Current mitigation strategies focus on good management practice within meat processing plants. However, this is not always sufficient to prevent spoilage. This review summarises the issues associated with meat spoilage because of psychrotolerant clostridia and discusses areas that require further study. [source]


Global health partnerships in practice: taking stock of the GAVI Alliance's new investment in health systems strengthening

INTERNATIONAL JOURNAL OF HEALTH PLANNING AND MANAGEMENT, Issue 1 2009
Joseph F. Naimoli
Despite a burgeoning literature on global health partnerships (GHPs), there have been few studies of how GHPs, particularly those trying to build a bridge between horizontal and vertical modes of delivering essential health services, operate at global and country levels. This paper will help address this knowledge gap by describing and analyzing the GAVI Alliance's early experience with health systems strengthening (HSS) to improve immunization coverage and other maternal-child health outcomes. To date, the strengths of HSS reside in its potential to optimize GAVI's overall investment in immunization, efforts to harmonize with other initiatives, willingness to acknowledge risk and identify mitigation strategies, engagement of diverse stakeholders, responsiveness to country needs, and effective management of an ambitious grant-making enterprise. The challenges have been forging a common vision and approach, governance, balancing pressure to move money with incremental learning, managing partner roles and relationships, managing the "value for money" risk, and capacity building. This mid-point stock-taking makes recommendations for moving GAVI forward in a thoughtful manner. The findings should be of interest to other GHPs because of their larger significance. This is a story about how a successful alliance that decided to broaden its mandate has responded to the technical, organizational, and political complexities that challenge its traditional business model. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Optimization of energy usage for fleet-wide power generating system under carbon mitigation options

AICHE JOURNAL, Issue 12 2009
A. Elkamel
Abstract This article presents a fleet-wide model for energy planning that can be used to determine the optimal structure necessary to meet a given CO2 reduction target while maintaining or enhancing power to the grid. The model incorporates power generation as well as CO2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear, and wind). The model is formulated as a mixed integer program and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO2 reduction target and electricity demand at a minimum overall cost. The model was applied to the energy supply system operated by Ontario power generation (OPG) for the province of Ontario, Canada. In 2002, OPG operated 79 electricity generating stations; 5 are fueled with coal (with a total of 23 boilers), 1 by natural gas (4 boilers), 3 nuclear, 69 hydroelectric and 1 wind turbine generating a total of 115.8 TWh. No CO2 capture process existed at any OPG power plant; about 36.7 million tonnes of CO2 was emitted in 2002, mainly from fossil fuel power plants. Four electricity demand scenarios were considered over a span of 10 years and for each case the size of new power generation capacity with and without capture was obtained. Six supplemental electricity generating technologies have been allowed for: subcritical pulverized coal-fired (PC), PC with carbon capture (PC+CCS), integrated gasification combined cycle (IGCC), IGCC with carbon capture (IGCC+CCS), natural gas combined cycle (NGCC), and NGCC with carbon capture (NGCC+CCS). The optimization results showed that fuel balancing alone can contribute to the reduction of CO2 emissions by only 3% and a slight, 1.6%, reduction in the cost of electricity compared to a calculated base case. It was found that a 20% CO2 reduction at current electricity demand could be achieved by implementing fuel balancing and switching 8 out of 23 coal-fired boilers to natural gas. However, as demand increases, more coal-fired boilers needed to be switched to natural gas as well as the building of new NGCC and NGCC+CCS for replacing the aging coal-fired power plants. To achieve a 40% CO2 reduction at 1.0% demand growth rate, four new plants (2 NGCC, 2 NGCC+CCS) as well as carbon capture processes needed to be built. If greater than 60% CO2 reductions are required, NGCC, NGCC+CCS, and IGCC+CCS power plants needed to be put online in addition to carbon capture processes on coal-fired power plants. The volatility of natural gas prices was found to have a significant impact on the optimal CO2 mitigation strategy and on the cost of electricity generation. Increasing the natural gas prices resulted in early aggressive CO2 mitigation strategies especially at higher growth rate demands. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Food Defense in an Aquaculture Setting

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2010
Barbara Rasco
Developing an overall food protection program for aquaculture and its related food processing operations includes biosecurity and good aquaculture practices for husbandry operations, and good manufacturing practices, food safety (sanitation standard operating procedures, and hazard analysis critical control point) programs for processing. Because of recent intentional contamination incidents of food and feed, developing and implementing a food defense as part of an overall food safety and quality management system have become more critical. Recent developments in food defense, suitable preventive measures, mitigation strategies, and model implementation plans for an aquaculture operation are presented here. [source]


The assessment of microscopic charging effects induced by focused electron and ion beam irradiation of dielectrics

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2007
Marion A. Stevens-Kalceff
Abstract Energetic beams of electrons and ions are widely used to probe the microscopic properties of materials. Irradiation with charged beams in scanning electron microscopes (SEM) and focused ion beam (FIB) systems may result in the trapping of charge at irradiation induced or pre-existing defects within the implanted microvolume of the dielectric material. The significant perturbing influence on dielectric materials of both electron and (Ga+) ion beam irradiation is assessed using scanning probe microscopy (SPM) techniques. Kelvin Probe Microscopy (KPM) is an advanced SPM technique in which long-range Coulomb forces between a conductive atomic force probe and the silicon dioxide specimen enable the potential at the specimen surface to be characterized with high spatial resolution. KPM reveals characteristic significant localized potentials in both electron and ion implanted dielectrics. The potentials are observed despite charge mitigation strategies including prior coating of the dielectric specimen with a layer of thin grounded conductive material. Both electron- and ion-induced charging effects are influenced by a delicate balance of a number of different dynamic processes including charge-trapping and secondary electron emission. In the case of ion beam induced charging, the additional influence of ion implantation and nonstoichiometric sputtering from compounds is also important. The presence of a localized potential will result in the electromigration of mobile charged defect species within the irradiated volume of the dielectric specimen. This electromigration may result in local modification of the chemical composition of the irradiated dielectric. The implications of charging induced effects must be considered during the microanalysis and processing of dielectric materials using electron and ion beam techniques. Microsc. Res. Tech., 2007. © 2007 Wiley-Liss, Inc. [source]


Risk attitudes and mitigation among gold miners and others in the Suriname rainforest

NATURAL RESOURCES FORUM, Issue 4 2003
Marieke Heemskerk
Abstract This article analyses the question: do attitudes towards risk influence participation in small-scale gold mining, a hazardous activity that generates uncertain income? This question is examined by measuring and comparing the risk attitudes of gold miners and non-mining community members in the rainforest of Suriname, South America. The author presents a multivariate model to predict the duration of work in mining areas as a function of risk tolerance, age, education, and household demographics. The results suggest that a greater tolerance to risk increases the duration of a person's mining career. However, attitudes explain only a fraction of the variation in occupational choices. Qualitative data suggest that these choices are primarily shaped by local barriers to human capital development and by national economic volatility. Given their marginal position in society and the multitude of mining risk mitigation strategies, it is questionable whether gold mining exposes Suriname forest peoples to greater risks than other subsistence alternatives. The author argues that sensitivity to local historical and cultural conditions would improve the efficiency of policies aimed at developing a more sustainable mining industry. By zooming in on the daily lives of miners, anthropology can complement macro-scale analyses and contribute to policy interventions in the small-scale mining sector. [source]


Climate change and the characterization, breeding and conservation of animal genetic resources

ANIMAL GENETICS, Issue 2010
Irene Hoffmann
Summary Livestock production both contributes to and is affected by climate change. In addition to the physiological effects of higher temperatures on individual animals, the consequences of climate change are likely to include increased risk that geographically restricted rare breed populations will be badly affected by disturbances. Indirect effects may be felt via ecosystem changes that alter the distribution of animal diseases or affect the supply of feed. Breeding goals may have to be adjusted to account for higher temperatures, lower quality diets and greater disease challenge. Species and breeds that are well adapted to such conditions may become more widely used. Climate change mitigation strategies, in combination with ever increasing demand for food, may also have an impact on breed and species utilization, driving a shift towards monogastrics and breeds that are efficient converters of feed into meat, milk and eggs. This may lead to the neglect of the adaptation potential of local breeds in developing countries. Given the potential for significant future changes in production conditions and in the objectives of livestock production, it is essential that the value provided by animal genetic diversity is secured. This requires better characterization of breeds, production environments and associated knowledge; the compilation of more complete breed inventories; improved mechanisms to monitor and respond to threats to genetic diversity; more effective in situ and ex situ conservation measures; genetic improvement programmes targeting adaptive traits in high-output and performance traits in locally adapted breeds; increased support for developing countries in their management of animal genetic resources; and wider access to genetic resources and associated knowledge. [source]


Application of QuickBird and aerial imagery to detect Pinus radiata in remnant vegetation

AUSTRAL ECOLOGY, Issue 6 2010
NERISSA HABY
Abstract The invasion of Pinus radiata from long-term established plantations is contributing to the degradation of fragmented and isolated remnants of native vegetation. Within the south-east of South Australia, the 20 vegetation communities that occur within 500 m of a plantation edge are at risk, including nine state threatened communities. To plan effective mitigation strategies, the current extent and distribution of P. radiata needs to be ascertained. High spatial resolution, multispectral QuickBird imagery and aerial photography were used to classify P. radiata within eucalypt and acacia woodlands, melaleuca shrubland, modified pasture and an Eucalyptus globulus plantation. Unsupervised classification of aerial photography gave the best result showing reasonable conformity with the observed distribution of P. radiata at the site scale. However, the 9.4 ± 13.5 (SD) cover classified in the quadrats sampled for the accuracy assessment exceeded the 1.4 ± 2.4 (SD) P. radiata cover determined from an independent dataset. Only 30.1 ± 37.9% (SD) of trees within the quadrats and 9.40 ± 13.49% (SD) of their foliage cover were classified. Trees detected by partial classification of canopy were positively correlated with both tree height and canopy diameter. Overall, the low detection rates were attributed to insufficient spectral resolution. Using higher resolution imagery, together with an object-based image analysis or combination of multispectral and airborne digital image classification, restricted to large emergent adult trees using LiDAR analysis, is likely to improve adult P. radiata detection accuracy. [source]


Optimization of energy usage for fleet-wide power generating system under carbon mitigation options

AICHE JOURNAL, Issue 12 2009
A. Elkamel
Abstract This article presents a fleet-wide model for energy planning that can be used to determine the optimal structure necessary to meet a given CO2 reduction target while maintaining or enhancing power to the grid. The model incorporates power generation as well as CO2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear, and wind). The model is formulated as a mixed integer program and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO2 reduction target and electricity demand at a minimum overall cost. The model was applied to the energy supply system operated by Ontario power generation (OPG) for the province of Ontario, Canada. In 2002, OPG operated 79 electricity generating stations; 5 are fueled with coal (with a total of 23 boilers), 1 by natural gas (4 boilers), 3 nuclear, 69 hydroelectric and 1 wind turbine generating a total of 115.8 TWh. No CO2 capture process existed at any OPG power plant; about 36.7 million tonnes of CO2 was emitted in 2002, mainly from fossil fuel power plants. Four electricity demand scenarios were considered over a span of 10 years and for each case the size of new power generation capacity with and without capture was obtained. Six supplemental electricity generating technologies have been allowed for: subcritical pulverized coal-fired (PC), PC with carbon capture (PC+CCS), integrated gasification combined cycle (IGCC), IGCC with carbon capture (IGCC+CCS), natural gas combined cycle (NGCC), and NGCC with carbon capture (NGCC+CCS). The optimization results showed that fuel balancing alone can contribute to the reduction of CO2 emissions by only 3% and a slight, 1.6%, reduction in the cost of electricity compared to a calculated base case. It was found that a 20% CO2 reduction at current electricity demand could be achieved by implementing fuel balancing and switching 8 out of 23 coal-fired boilers to natural gas. However, as demand increases, more coal-fired boilers needed to be switched to natural gas as well as the building of new NGCC and NGCC+CCS for replacing the aging coal-fired power plants. To achieve a 40% CO2 reduction at 1.0% demand growth rate, four new plants (2 NGCC, 2 NGCC+CCS) as well as carbon capture processes needed to be built. If greater than 60% CO2 reductions are required, NGCC, NGCC+CCS, and IGCC+CCS power plants needed to be put online in addition to carbon capture processes on coal-fired power plants. The volatility of natural gas prices was found to have a significant impact on the optimal CO2 mitigation strategy and on the cost of electricity generation. Increasing the natural gas prices resulted in early aggressive CO2 mitigation strategies especially at higher growth rate demands. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Windbreaks as a pesticide drift mitigation strategy: a review

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2001
Tamer Ucar
Abstract The use of natural and artificial barriers to mitigate pesticide drift from agricultural and forest applications is discussed. This technique has been considered as an alternative to current methods at a time when environmental concerns are under great public scrutiny. There has been a variety of research experiments on this subject from New Zealand to The Netherlands which have documented reductions in spray drift of up to 80,90%. However, there are still enormous data gaps to utilize this method accurately. The aerodynamic factors of wind barriers and shelter effects on crop growth and yield have been well investigated. In contrast, some of the important aspects of drift mitigation, eg porosity and turbulence, have been difficult to obtain and no standard methodologies are currently available to evaluate and classify windbreaks and shelterbelts or to determine their efficiency in reducing drift. Thus there is a significant opportunity to incorporate windbreaks into the tool set of drift mitigation tactics. Government policies, initiatives, legislation, etc, which currently address water quality, BMP, stewardship, buffers, etc, are issues which so far have not included windbreaks as a valuable drift mitigation strategy. © 2001 Society of Chemical Industry [source]


Susceptibility of mouse minute virus to inactivation by heat in two cell culture media types

BIOTECHNOLOGY PROGRESS, Issue 3 2009
Marc Schleh
Abstract Viral contaminations of biopharmaceutical manufacturing cell culture facilities are a significant threat and one for which having a risk mitigation strategy is highly desirable. High temperature, short time (HTST) mammalian cell media treatment may potentially safeguard manufacturing facilities from such contaminations. HTST is thought to inactivate virions by denaturing proteins of the viral capsid, and there is evidence that HTST provides ample virucidal efficacy against nonenveloped or naked viruses such as mouse minute virus (MMV), a parvovirus. The aim of the studies presented herein was to further delineate the susceptibility of MMV, known to have contaminated mammalian cell manufacturing facilities, to heat by exposing virus-spiked cell culture media to a broad range of temperatures and for various times of exposure. The results of these studies show that HTST is capable of inactivating MMV by three orders of magnitude or more. Thus, we believe that HTST is a useful technology for the purposes of providing a barrier to adventitious contamination of mammalian cell culture processes in the biopharmaceutical industry. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]