Home About us Contact | |||
Mitigation Potential (mitigation + potential)
Selected AbstractsCarbon sequestration under Miscanthus: a study of 13C distribution in soil aggregatesGCB BIOENERGY, Issue 5 2009MARTA DONDINI Abstract The growing of bioenergy crops has been widely suggested as a key strategy in mitigating anthropogenic CO2 emissions. However, the full mitigation potential of these crops cannot be assessed without taking into account their effect on soil carbon (C) dynamics. Therefore, we analyzed the C dynamics through four soil depths under a 14-year-old Miscanthus plantation, established on former arable land. An adjacent arable field was used as a reference site. Combining soil organic matter (SOM) fractionation with 13C natural abundance analyses, we were able to trace the fate of Miscanthus -derived C in various physically protected soil fractions. Integrated through the whole soil profile, the total amount of soil organic carbon (SOC) was higher under Miscanthus than under arable crop, this difference was largely due to the input of new C. The C stock of the macroaggregates (M) under Miscanthus was significantly higher than those in the arable land. Additionally, the C content of the micro-within macroaggregates (mM) were higher in the Miscanthus soil as compared with the arable soil. Analysis of the intramicroaggregates particulate organic matter (POM) suggested that the increase C storage in mM under Miscanthus was caused by a decrease in disturbance of M. Thus, the difference in C content between the two land use systems is largely caused by soil C storage in physically protected SOM fractions. We conclude that when Miscanthus is planted on former arable land, the resulting increase in soil C storage contributes considerably to its CO2 mitigation potential. [source] Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analysesGCB BIOENERGY, Issue 4 2009JONATHAN HILLIER Abstract Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus (Miscanthus×giganteus), short rotation coppice (SRC) poplar (Populus trichocarpa Torr. & Gray ×P. trichocarpa, var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use , arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance. [source] Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zonesGLOBAL CHANGE BIOLOGY, Issue 12 2009SVEN G. SOMMER Abstract Livestock farming systems are major sources of trace gases contributing to emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and methane (CH4), i.e. N2O accounts for 10% and CH4 for 30% of the anthropogenic contributions to net global warming. This paper presents scenario assessments of whole-system effects of technologies for reducing GHG emissions from livestock model farms using slurry-based manure management. Changes in housing and storage practice, mechanical separation, and incineration of the solid fraction derived from separation were evaluated in scenarios for Sweden, Denmark, France, and Italy. The results demonstrated that changes in manure management can induce significant changes in CH4 and N2O emissions and carbon sequestration, and that the effect of introducing environmental technologies may vary significantly with livestock farming practice and interact with climatic conditions. Shortening the in-house manure storage time reduced GHG emissions by 0,40%. The largest GHG reductions of 49 to, in one case, 82% were obtained with a combination of slurry separation and incineration, the latter process contributing to a positive GHG balance of the system by substituting fossil fuels. The amount and composition of volatile solids (VS) and nitrogen pools were main drivers in the calculations performed, and requirements to improve the assessment of VS composition and turnover during storage and in the field were identified. Nevertheless, the results clearly showed that GHG emission estimates will be unrealistic, if the assumed manure management or climatic conditions do not properly represent a given country or region. The results also showed that the mitigation potential of specific manure management strategies and technologies varied depending on current management and climatic conditions. [source] Implications of system expansion for the assessment of well-to-wheel CO2 emissions from biomass-based transportationINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2010Elisabeth Wetterlund Abstract In this paper we show the effects of expanding the system when evaluating well-to-wheel (WTW) CO2 emissions for biomass-based transportation, to include the systems surrounding the biomass conversion system. Four different cases are considered: DME via black liquor gasification (BLG), methanol via gasification of solid biomass, lignocellulosic ethanol and electricity from a biomass integrated gasification combined cycle (BIGCC) used in a battery-powered electric vehicle (BPEV). All four cases are considered with as well as without carbon capture and storage (CCS). System expansion is used consistently for all flows. The results are compared with results from a conventional WTW study that only uses system expansion for certain co-product flows. It is shown that when expanding the system, biomass-based transportation does not necessarily contribute to decreased CO2 emissions and the results from this study in general indicate considerably lower CO2 mitigation potential than do the results from the conventional study used for comparison. It is shown that of particular importance are assumptions regarding future biomass use, as by expanding the system, future competition for biomass feedstock can be taken into account by assuming an alternative biomass usage. Assumptions regarding other surrounding systems, such as the transportation and the electricity systems are also shown to be of significance. Of the four studied cases without CCS, BIGCC with the electricity used in a BPEV is the only case that consistently shows a potential for CO2 reduction when alternative use of biomass is considered. Inclusion of CCS is not a guarantee for achieving CO2 reduction, and in general the system effects are equivalent or larger than the effects of CCS. DME from BLG generally shows the highest CO2 emission reduction potential for the biofuel cases. However, neither of these options for biomass-based transportation can alone meet the needs of the transport sector. Therefore, a broader palette of solutions, including different production routes, different fuels and possibly also CCS, will be needed. Copyright © 2009 John Wiley & Sons, Ltd. [source] Assessing the current Brazilian sugarcane industry and directing developments for maximum fossil fuel mitigation for the international petrochemical marketBIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 3 2009Ben Brehmer Abstract The EU proposes that 5.75% of the transportation fuels market consist of biofuels by 2010 and the USA proposes that all gasoline be blended with 10% bioethanol by 2012. While these targets have not yet been reached, an aura of critique is emerging, arguing that biofuel mandates are not sustainable. One of the major ensuing topics surrounding biofuel sustainability is the food versus fuel debate in reference to first-generation (or food-based) technology. This article will reveal that for the specific case of sugarcane in Brazil, first-generation bioethanol is more sustainable than expansion to include second-generation (non-food-based) technology. Two life cycle assessments are conducted. First, a cradle-to-factory gate analysis with focus on fossil fuel reduction potential. Fertile land is consumed and occupied by all biomass crops; the biomass option with the highest mitigation potential per land can be considered the most sustainable and least intrusive to food production. Ethanol, on average, can mitigate 104GJ/ha/a, which is equivalent to 17 barrels of oil annually. This can increase to 353GJ/ha/a for the foreseeable best practice situations, higher than the second-generation option. A first-step chemical biorefinery producing ethylene achieves 509GJ/ha/a. Second, the BASF-developed eco-efficiency model, which links both environmental impacts and economic profitability in one, easy-to-interpret graph, is used as validation. Overall it is calculated that a best practice first-generation ethanol and its later dehydration to ethylene are the most eco-efficient options. The biobased economy deserves highly specific assessments. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd [source] |