Home About us Contact | |||
miRNA Processing (mirna + processing)
Selected AbstractsTargeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye developmentDEVELOPMENTAL DYNAMICS, Issue 9 2009Yan Li Abstract Dicer, a ribonuclease essential for miRNA processing, is expressed abundantly in developing mouse cornea and lens. We studied the roles of Dicer and miRNAs in eye development by conditionally deleting the Dicer gene in the mouse lens and corneal epithelium. Adult Dicer conditional null (DicerCN) mice had severe microphthalmia with no discernible lens and a poorly stratified corneal epithelium. Targeted deletion of Dicer effectively inhibited miRNA processing in the developing lens at 12.5 day of embryogenesis (E12.5). Lens development initiated normally but underwent progressive dystrophy between E14.5 and E18.5. Microarray analysis revealed activation of P53 signaling in DicerCN lenses at E13.5, consistent with increased apoptosis and reduced cell proliferation between E12.5 and E14.5. Expression of Pax6 and other lens developmental transcription factors were not greatly affected between E12.5 and E14.5 but decreased as the lens degenerated. Our data indicated an indispensible role for Dicer and miRNAs in lens and corneal development. Developmental Dynamics 238:2388,2400, 2009. © 2009 Wiley-Liss, Inc. [source] Structural and biochemical advances in mammalian RNAiJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2006Robert E. Collins Abstract RNAi is a collection of processes mediated by small RNAs that silence gene expression in a sequence-specific manner. Studies of processes as divergent as post-transcriptional gene silencing, transcriptional silencing through RNA-directed DNA methylation, or heterochromatin formation, and even RNA-guided DNA elimination have converged on a core pathway. This review will highlight recent structural and mechanistic studies illustrating siRNA and miRNA processing, RISC formation, the execution of RNAi by RISC, and the regulation of these pathways, with a specific focus on vertebrate systems. J. Cell. Biochem. 99: 1251,1266, 2006. © 2006 Wiley-Liss, Inc. [source] SERRATE is a novel nuclear regulator in primary microRNA processing in ArabidopsisTHE PLANT JOURNAL, Issue 6 2006Li Yang Summary The Arabidopsis gene SERRATE (SE) controls leaf development, meristem activity, inflorescence architecture and developmental phase transition. It has been suggested that SE, which encodes a C2H2 zinc finger protein, may change gene expression via chromatin modification. Recently, SE has also been shown to regulate specific microRNAs (miRNAs), miR165/166, and thus control shoot meristem function and leaf polarity. However, it remains unclear whether and how SE modulates specific miRNA processing. Here we show that the se mutant exhibits some similar developmental abnormalities as the hyponastic leaves1 (hyl1) mutant. Since HYL1 is a nuclear double-stranded RNA-binding protein acting in the DICER-LIKE1 (DCL1) complex to regulate the first step of primary miRNA transcript (pri-miRNA) processing, we hypothesized that SE could play a previously unrecognized and general role in miRNA processing. Genetic analysis supports that SE and HYL1 act in the same pathway to regulate plant development. Consistently, SE is critical for the accumulation of multiple miRNAs and the trans -acting small interfering RNA (ta-siRNA), but is not required for sense post-transcriptional gene silencing. We further demonstrate that SE is localized in the nucleus and interacts physically with HYL1. Finally, we provide evidence that SE and HYL1 probably act with DCL1 in processing pri-miRNAs before HEN1 in miRNA biogenesis. In plants and animals, miRNAs are known to be processed in a stepwise manner from pri-miRNA. Our data strongly suggest that SE plays an important and general role in pri-miRNA processing, and it would be interesting to determine whether animal SE homologues may play similar roles in vivo. [source] |