Home About us Contact | |||
Metapopulation Theory (metapopulation + theory)
Selected AbstractsIs the matrix a sea?ECOLOGICAL ENTOMOLOGY, Issue 1 2005Habitat specificity in a naturally fragmented landscape Abstract., 1. Metapopulation and island biogeography theory assume that landscapes consist of habitat patches set in a matrix of non-habitat. If only a small proportion of species conform to the patch,matrix assumptions then metapopulation theory may only describe special cases rather than being of more general ecological importance. 2. As an initial step towards understanding the prevalence of metapopulation dynamics in a naturally fragmented landscape, the distribution of beetle species in three replicates of three habitat types was examined, including rainforest and eucalypt forest (the habitat patches), and buttongrass sedgeland (the matrix), in south-west Tasmania, Australia. 3. Ordination methods indicated that the buttongrass fauna was extremely divergent from the fauna of forested habitats. Permutation tests showed that the abundance of 13 of 17 commonly captured species varied significantly among habitats, with eight species confined to eucalypts or rainforest, and three species found only in buttongrass. Approximately 60% of species were confined to forested habitat implying that metapopulation theory has the potential to be very important in the forest,buttongrass landscape. 4. Although floristically the rainforest and eucalypts were extremely distinct, the beetle faunas from eucalypts and rainforests overlapped substantially. Therefore rainforest patches connected by eucalypt forest represent continuous habitat for most species. 5. Other studies report a wide range of values for the proportion of patch-specific species in fragmented landscapes. Understanding the environmental or historical conditions under which a high proportion of species become patch specialists would help to identify where spatial dynamic theory may be especially applicable, and where habitat loss and fragmentation poses the greatest threat to biodiversity. [source] Myths and moderation in marine ,metapopulations'?FISH AND FISHERIES, Issue 1 2002R Kent Smedbol Abstract The metapopulation concept is appearing with increasing frequency in the marine population dynamics and genetics literature, though its applicability to marine systems remains an open question. Moreover, in recent years, the meaning of the term ,metapopulation' has become blurred, concomitant with its increasing use. In this paper, we summarize the concept of metapopulation dynamics and the associated theoretical assumptions. We call for a stricter definition and use of the term ,metapopulation', critically evaluate the applicability of metapopulation theory to marine population dynamics and its use in the related literature, and consider two published case-studies that investigate metapopulation structuring in specific marine populations. Finally, we urge scientists to carefully articulate what is meant by the term ,metapopulation' and to use appropriate citations in the primary literature to circumvent the potential for nebulous (and possibly damaging) conclusions in the future. [source] Site reoccupation in fragmented landscapes: testing predictions of metapopulation theoryJOURNAL OF ANIMAL ECOLOGY, Issue 2 2001Ralph S. Hames Summary 1,Populations of formerly continuously distributed species subdivided by habitat fragmentation may show distributions in space and time that are consistent with predictions of metapopulation theory. Local extinctions and recolonizations should result in the most fragmented sites being infrequently occupied and the least fragmented sites being continuously occupied by sensitive species. The probability of extinction is predicted to be negatively correlated with patch size and the amount of habitat in the landscape. Conversely, recolonization is predicted to be negatively correlated with the isolation of the patch, and positively correlated with the amount of habitat in the landscape. 2,Data from a 3-year study of the effect of fragmentation were used to test whether these predictions from metapopulation theory apply to populations of the long-distance migrant forest bird Piranga olivacea (Scarlet Tanager) in fragmented North American landscapes. 3,Principal components analysis was used to derive a composite measure of fragmentation. This measure was used in a logistic regression as a predictor of the number of years that territorial males would occupy a site, given that it was occupied at least once. More fragmented sites were more likely to be occupied only once; the least fragmented sites were more likely to be occupied in all three years. Data on fragmentation were necessary, but not sufficient, to predict site reoccupation, and were poor predictors at medium levels of fragmentation. 4,The univariate measures of fragmentation (patch size and isolation, proportion of forest, and forest/non-forest edge), were also used in logistic regressions to predict the separate probabilities of local extinction or recolonization. Local extinctions were negatively correlated with patch size and amount of forest in the landscape, as predicted. Recolonizations were negatively correlated with isolation of the patch as predicted, and surprisingly, also with the amount of edge in the landscape. This suggests that stochasticity may drive extinctions, but that habitat selection may play an important role in recolonization. 5,Demographic data are usually required to establish the suitability of habitat to support persistent populations, but multiple-year distributional data can provide information on habitat quality far above that obtained from single-year studies. [source] Will agri-environment schemes deliver substantial biodiversity gain, and if not why not?JOURNAL OF APPLIED ECOLOGY, Issue 1 2007MARK J. WHITTINGHAM Summary 1One of the main aims of agri-environment schemes (AES) is to increase biodiversity on farmland. Common conservation practice is to identify areas containing valuable resources (e.g. habitats, ecosystems and species) and then to protect them: ,protected area' schemes. AES differ from typical protected area schemes because they are often applied to small patches of land, such as field boundaries, and are sometimes located in areas where the target species does not occur. 2AES require an enormous amount of funding and they have been applied across a large geographical area, i.e. the European Union. However, recent evidence suggests mixed results regarding the effects of AES on biodiversity. 3It is hard to predict the consequences of AES on biodiversity because a number of factors are seldom accounted for explicitly. For example: (i) the occurrence of target species will vary between patches; (ii) there will be variation in habitat preference by species in different geographical areas; (iii) both optimal foraging theory and metapopulation theory predict that the distance from breeding individuals is likely to determine patch use; (iv) if resources are widely spread then the home ranges of some species may need to increase to encompass the multiple resources needed for breeding. The potential for these factors to affect the outcome of AES on biodiversity is discussed. 4Synthesis and applications. AES are likely to increase biodiversity if a lower number of larger resource patches are provided, in contrast to current practice that promotes many small fragmented areas of environmental resource. One way of achieving this may be to run these schemes more like traditional protected area schemes, with farms or groups of farms managed using extensive farming methods. Such an approach negates some of the problems of current AES and may help to address a wider range of concerns held by different countryside stakeholders. [source] Habitat connectivity and matrix restoration: the wider implications of agri-environment schemesJOURNAL OF APPLIED ECOLOGY, Issue 2 2006PAUL F. DONALD Summary 1The spread and intensification of agriculture are recognized as two of the most important global threats to wildlife. There are clear links between agricultural change and declines in biodiversity across a wide range of agricultural systems, and convincing evidence that reversing these changes leads to a recovery in wildlife populations. 2Nearly 4 billion euros are now paid annually through agri-environment schemes (AES) to farmers in Europe and North America to make environmental improvements to their land. Where appropriately designed and targeted, these schemes have proved successful in reversing declines in farmland wildlife populations. 3We argue that insights gained from island biogeography and metapopulation theory, and from theoretical and empirical assessments of landscape connectivity suggest that AES may carry substantial wider benefits, which so far have not been considered in the design and deployment of such schemes. ,Softening' agricultural land could offset some of the negative impacts on biodiversity of the loss and fragmentation of non-agricultural habitats; could allow species to adapt to climate change; could slow the spread of alien and invasive species; and could contribute positively to the coherence of key biodiversity and protected area networks. Indeed, AES might represent the only viable way to counter these threats. 4We outline a number of ways in which these wider benefits could be taken account of in the design of AES and suggest a number of characteristics of the species most likely to benefit from them. 5Synthesis and applications. Agri-environment schemes might bring significant environmental benefits to habitats other than farmland by restoring the agricultural matrix that separates them. Theoretical and empirical research suggests that matrix restoration improves a number of ecosystem functions. Where they are available, AES might therefore represent a viable mechanism for addressing a range of pandemic environmental problems such as global climate change. Little consideration has so far been given to these wider conservation applications in the design, deployment and monitoring of AES. [source] Patterns of population genetic diversity in riparian and aquatic plant species along riversJOURNAL OF BIOGEOGRAPHY, Issue 9 2010Olivier Honnay Abstract Aim, The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ,unidirectional dispersal hypothesis' and is the genetic equivalent of the more generally known ,drift paradox'. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location, The Meuse River (Belgium) and rivers world-wide. Methods, First, we used amplified fragment length polymorphism markers to compare patterns of within- and between-population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta-analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results, Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta-analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions, Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity. [source] Support for a metapopulation structure among mammalsMAMMAL REVIEW, Issue 3 2009PIETER I. OLIVIER ABSTRACT 1The metapopulation metaphor is increasingly used to explain the spatial dynamics of animal populations. However, metapopulation structure is difficult to identify in long-lived species that are widely distributed in stochastic environments, where they can resist extinctions. The literature on mammals may not provide supporting evidence for classic metapopulation dynamics, which call for the availability of discrete habitat patches, asynchrony in local population dynamics, evidence for extinction and colonization processes, and dispersal between local populations. 2Empirical evidence for metapopulation structure among mammals may exist when applying more lenient criteria. To meet these criteria, mammals should live in landscapes as discrete local breeding populations, and their demography should be asynchronous. 3We examined the literature for empirical evidence in support of the classical criteria set by Hanski (1999), and for the more lenient subset of criteria proposed by Elmhagen & Angerbjörn (2001). We suggest circumstances where metapopulation theory could be important in understanding population processes in mammals of different body sizes. 4The patchy distribution of large (>100 kg) mammals and dispersal often motivate inferences in support of a metapopulation structure. Published studies seldom address the full suite of classical criteria. However, studies on small mammals are more likely to record classic metapopulation criteria than those on large mammals. The slow turnover rate that is typical for medium-sized and large mammals apparently makes it difficult to identify a metapopulation structure during studies of short duration. 5To identify a metapopulation structure, studies should combine the criteria set by Hanski (1999) and Elmhagen & Angerbjörn (2001). Mammals frequently live in fragmented landscapes, and processes involved in the maintenance of a metapopulation structure should be considered in conservation planning and management. [source] |