Metamorphic Stages (metamorphic + stage)

Distribution by Scientific Domains


Selected Abstracts


A counter-clockwise P,T path for the Voltri Massif eclogites (Ligurian Alps, Italy)

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2005
G. VIGNAROLI
Abstract Integrated petrological and structural investigations of eclogites from the eclogite zone of the Voltri Massif (Ligurian Alps) have been used to reconstruct a complete Alpine P,T deformation path from burial by subduction to subsequent exhumation. The early metamorphic evolution of the eclogites has been unravelled by correlating garnet zonation trends with the chemical variations in inclusions found in the different garnet domains. Garnet in massive eclogites displays typical growth zoning, whereas garnet in foliated eclogites shows rim-ward resorption, likely related to re-equilibration during retrogressive evolution. Garnet inclusions are distinctly different from core to rim, consisting primarily of Ca-, Na/Ca-amphibole, epidote, paragonite and talc in garnet cores and of clinopyroxene ± talc in the outer garnet domains. Quantitative thermobarometry on the inclusion assemblages in the garnet cores defines an initial greenschist-to-amphibolite facies metamorphic stage (M1 stage) at c. 450,500 °C and 5,8 kbar. Coexistence of omphacite + talc + katophorite inclusion assemblage in the outer garnet domains indicate c. 550 °C and 20 kbar, conditions which were considered as minimum P,T estimates for the M2 eclogitic stage. The early phase of retrograde reactions is polyphase and equilibrated under epidote,blueschist facies (M3 stage), characterized by the development of composite reaction textures (garnet necklaces and fluid-assisted Na-amphibole-bearing symplectites) produced at the expense of the primary M2 garnet-clinopyroxene assemblage. The blueschist retrogression is contemporaneous with the development of a penetrative deformation (D3) that resulted in a non-coaxial fabric, with dominant top-to-the-N sense of shear during rock exhumation. All of that is overprinted by a texturally late amphibolite/greenschist facies assemblages (M4 & M5 stages), which are not associated with a penetrative structural fabric. The combined P,T deformation data are consistent with an overall counter-clockwise path, from the greenschist/amphibolite, through the eclogite, the blueschist to the greenschist facies. These new results provide insights into the dynamic evolution of the Tertiary oceanic subduction processes leading to the building up of the Alpine orogen and the mechanisms involved in the exhumation of its high-pressure roots. [source]


High-pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P,T paths and geotectonic significance

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2002
J. H. Guo
Abstract High-pressure basic granulites are widely distributed as enclaves and sheet-like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P,T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low-Ca core of growth-zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750,870 °C and 11,14.5 kbar (M2) is defined by high-Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770,830 °C and 8.5,10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500,650 °C and 5.5,8 kbar (M4). These results help define a sequential P,T path containing prograde, near-isothermal decompression (ITD) and near-isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P,T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high-pressures (6,14.5 kbar) of the four metamorphic stages and the geometry of the P,T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper-plate might be the tectonically overlying Khondalite series, which was subjected to medium- to low-pressure (MP/LP: 7,4 kbar) granulite facies metamorphism with a clockwise P,T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90,1.85 Ga in a collisional environment created by the assembly process of the North China craton. [source]


Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2001
Y. L. Xiao
Abstract A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well-preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A P,T path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2 -bearing NaCl-rich solutions, whereas it changed into CO2 -dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low-salinity fluids were involved. In situ UV-laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (,18OVSMOW = c. 6.7,) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid,rock interactions. Unusual MORB-like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra-high-pressure (UHP) eclogites in the Dabie-Sulu area. However, the age-corrected initial ,Nd(t) is ,,2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism. [source]


High-Si phengite, mineral chemistry and P,T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China

GEOLOGICAL JOURNAL, Issue 3-4 2000
Robert Schmid
Abstract A suite of coesite,eclogites and associated calc-silicate rocks from the ultra-high-pressure (UHP) belt in the Dabie Shan (eastern China) was investigated petrologically. Field relations and the presence of UHP minerals such as coesite, omphacite and high-Si phengite in the eclogites and the enclosing calc-silicates testify to a common metamorphic evolution for these two lithologies. Except for one sample, all bear phengite with unusually high silica contents (Si up to 3.7 per formula unit). Phengite occupies various textural positions indicating that different metamorphic stages are reflected by these white micas, which correlate with distinct mineral zonation patterns. Using the latest thermobarometric calibrations for eclogite-facies rocks, maximum pressure,temperature (P,T) conditions of 40,48 kbar at <,750°C were estimated for the peak-metamorphic mineral assemblages. These P,T conditions were calculated for both eclogitic garnet porphyroblasts with diffusion-controlled zoning as well as garnet porphyroblasts with prograde growth zonation patterns. Most samples were affected by a strong retrograde overprint mainly under eclogite- and amphibolite-facies conditions. Thermobarometry using mineral sets from different textural positions reveals cooling and decompression of the UHP rocks down to <,20 kbar at <,600°C for the bulk of the samples. Decompression and heating indicated by a few samples is interpreted to result from mineral chemical disequilibrium or late thermal influence. These new data show that subduction of continental crust in the Dabie Shan was deeper than previously thought, and also that some cooling and decompression took place at upper-mantle depths. Copyright © 2000 John Wiley & Sons, Ltd. [source]


Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2007
Y.-C. LIU
Abstract Although ultrahigh-pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east-central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high-pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle-derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two-fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition. [source]


Metamorphic evolution of kyanite,staurolite-bearing epidote,amphibolite from the Early Palaeozoic Oeyama belt, SW Japan

JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2004
T. Tsujimori
Abstract Early Palaeozoic kyanite,staurolite-bearing epidote,amphibolites including foliated epidote,amphibolite (FEA), and nonfoliated leucocratic or melanocratic metagabbros (LMG, MMG), occur in the Fuko Pass metacumulate unit (FPM) of the Oeyama belt, SW Japan. Microtextural relationships and mineral chemistry define three metamorphic stages: relict granulite facies metamorphism (M1), high- P (HP) epidote,amphibolite facies metamorphism (M2), and retrogression (M3). M1 is preserved as relict Al-rich diopside (up to 8.5 wt.% Al2O3) and pseudomorphs after spinel and plagioclase in the MMG, suggesting a medium- P granulite facies condition (0.8,1.3 GPa at >,850 °C). An unusually low-variance M2 assemblage, Hbl + Czo + Ky ± St + Pg + Rt ± Ab ± Crn, occurs in the matrix of all rock types. The presence of relict plagioclase inclusions in M2 kyanite associated with clinozoisite indicates a hydration reaction to form the kyanite-bearing M2 assemblage during cooling. The corundum-bearing phase equilibria constrain a qualitative metamorphic P,T condition of 1.1,1.9 GPa at 550,800 °C for M2. The M2 minerals were locally replaced by M3 margarite, paragonite, plagioclase and/or chlorite. The breakdown of M2 kyanite to produce the M3 assemblage at <,0.5 GPa and 450,500 °C suggests a greenschist facies overprint during decompression. The P,T evolution of the FPM may represent subduction of an oceanic plateau with a granulite facies lower crust and subsequent exhumation in a Pacific-type orogen. [source]


,Forbidden zone' subduction of sediments to 150 km depth, the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2003
L. Zhang
Abstract The solid-state reaction magnesite (MgCO3) + calcite (aragonite) (CaCO3) = dolomite (CaMg(CO3)2) has been identified in metapelites from western Tianshan, China. Petrological studies show that two metamorphic stages are recorded in the metapelites: (1) the peak mineral assemblage of magnesite and calcite pseudomorphs after aragonite which is only preserved as inclusions within dolomite; and (2) the retrograde glaucophane-chloritoid facies mineral assemblage of glaucophane, chloritoid, dolomite, garnet, paragonite, chlorite and quartz. The peak metamorphic temperatures and pressures are calculated to be 560,600 °C, 4.95,5.07 GPa based on the calcite,dolomite geothermometer and the equilibrium calculation of the reaction dolomite = magnesite + aragonite, respectively. These give direct evidence in UHP metamorphic rocks from Tianshan, China, that carbonate sediments were subducted to greater than 150 km depth. This UHP metamorphism represents a geotherm lower than any previously estimated for subduction metamorphism (< 3.7 °C km,1) and is within what was previously considered a ,forbidden' condition within Earth. In terms of the carbon cycle, this demonstrates that carbonate sediments can be subducted to at least 150 km depth without releasing significant CO2 to the overlying mantle wedge. [source]


High-pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P,T paths and geotectonic significance

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2002
J. H. Guo
Abstract High-pressure basic granulites are widely distributed as enclaves and sheet-like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P,T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low-Ca core of growth-zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750,870 °C and 11,14.5 kbar (M2) is defined by high-Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770,830 °C and 8.5,10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500,650 °C and 5.5,8 kbar (M4). These results help define a sequential P,T path containing prograde, near-isothermal decompression (ITD) and near-isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P,T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high-pressures (6,14.5 kbar) of the four metamorphic stages and the geometry of the P,T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper-plate might be the tectonically overlying Khondalite series, which was subjected to medium- to low-pressure (MP/LP: 7,4 kbar) granulite facies metamorphism with a clockwise P,T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90,1.85 Ga in a collisional environment created by the assembly process of the North China craton. [source]


Effects of dietary docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) on the growth, survival, stress resistance and fatty acid composition in black sea bass Centropristis striata (Linnaeus 1758) larvae

AQUACULTURE RESEARCH, Issue 9 2010
Troy C Rezek
Abstract The objectives of this study were to determine the effects of the dietary docosahexaenoic acid (DHA) to arachidonic acid (ARA) ratio on the survival, growth, hypersaline stress resistance and tissue composition of black sea bass larvae raised from first feeding to metamorphic stages. Larvae were fed enriched rotifers Brachionus rotundiformis and Artemia nauplii containing two levels of DHA (0% and 10% total fatty acids=TFA) in conjunction with three levels of ARA (0%, 3% and 6% TFA). On d24ph, larvae fed the 10:6 (DHA:ARA) treatment showed significantly (P<0.05) higher survival (62.3%) than larvae fed 0:0 (DHA:ARA) (27.4%). Notochord length and dry weight were also significantly (P<0.05) greater in the 10:6 (DHA:ARA) treatment (8.65 mm, 2.14 mg) than in the 0:0 (DHA:ARA) (7.7 mm, 1.65 mg) treatment. During hypersaline (65 g L,1) challenge, no significant differences (P>0.05) were observed in the median survival time (ST50) between larvae fed 10% DHA (ST50=25.6 min) and larvae fed 0% DHA (ST50=18.2 min). The results suggested that black sea bass larvae fed prey containing 10% DHA with increasing ARA within the range of 0,6% showed improved growth and survival from first feeding through metamorphic stages. [source]