Home About us Contact | |||
Metamorphic Rims (metamorphic + rim)
Selected AbstractsSHRIMP U,Pb zircon chronology of ultrahigh-temperature spinel,orthopyroxene,garnet granulite from South Altay orogenic belt, northwestern ChinaISLAND ARC, Issue 3 2010Zilong Li Abstract Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U,Pb ages are reported from an ultrahigh-temperature (UHT) spinel,orthopyroxene,garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan,Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950°C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P,T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 ± 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490,500 Ma. Since the granulite was metamorphosed at temperatures >900°C, exceeding the closure temperature of U,Pb system in zircon, a possible interpretation is that the 499 ± 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ,500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo-Asian Ocean and associated accretion-collision tectonics of the Siberian and Kazakhstan,Junggar Plates followed by rapid exhumation leading to decompression. [source] Relics of the Mozambique Ocean in the central East African Orogen: evidence from the Vohibory Block of southern MadagascarJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2008N. JÖNS Abstract The Vohibory Block of south-western Madagascar is part of the East African Orogen, the formation of which is related to the assembly of the Gondwana supercontinent. It is dominated by metabasic rocks, which have chemical compositions similar to those of recent basalts from a mid-ocean ridge, back-arc setting and island-arc setting. The age of formation of protolith basalts has been dated at 850,700 Ma by U,Pb SHRIMP analysis of magmatic cores in zircon, pointing to an origin related to the Neoproterozoic Mozambique Ocean. The metabasic rocks are interpreted as representing components of an island arc with an associated back-arc basin. In the early stage of the Pan-African orogeny, these rocks experienced high-pressure amphibolite to granulite facies metamorphism (9,12 kbar, 750,880 °C), dated at 612 ± 5 Ma from metamorphic rims in zircon. The metamorphism was most likely related to accretion of the arc terrane to the margin of the Azania microcontinent (Proto-Madagascar) and closure of the back-arc basin. The main metamorphism is significantly older than high-temperature metamorphism in other tectonic units of southern Madagascar, indicating a distinct tectono-metamorphic history. [source] Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zirconJOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2002A. Möller Abstract SHRIMP U,Pb ages have been obtained for zircon in granitic gneisses from the aureole of the Rogaland anorthosite,norite intrusive complex, both from the ultrahigh temperature (UHT; >900 °C pigeonite-in) zone and from outside the hypersthene-in isograd. Magmatic and metamorphic segments of composite zircon were characterised on the basis of electron backscattered electron and cathodoluminescence images plus trace element analysis. A sample from outside the UHT zone has magmatic cores with an age of 1034 ± 7 Ma (2,, n = 8) and 1052 ± 5 Ma (1,, n = 1) overgrown by M1 metamorphic rims giving ages between 1020 ± 7 and 1007 ± 5 Ma. In contrast, samples from the UHT zone exhibit four major age groups: (1) magmatic cores yielding ages over 1500 Ma (2) magmatic cores giving ages of 1034 ± 13 Ma (2,, n = 4) and 1056 ± 10 Ma (1,, n = 1) (3) metamorphic overgrowths ranging in age between 1017 ± 6 Ma and 992 ± 7 Ma (1,) corresponding to the regional M1 Sveconorwegian granulite facies metamorphism, and (4) overgrowths corresponding to M2 UHT contact metamorphism giving values of 922 ± 14 Ma (2,, n = 6). Recrystallized areas in zircon from both areas define a further age group at 974 ± 13 Ma (2,, n = 4). This study presents the first evidence from Rogaland for new growth of zircon resulting from UHT contact metamorphism. More importantly, it shows the survival of magmatic and regional metamorphic zircon relics in rocks that experienced a thermal overprint of c. 950 °C for at least 1 Myr. Magmatic and different metamorphic zones in the same zircon are sharply bounded and preserve original crystallization age information, a result inconsistent with some experimental data on Pb diffusion in zircon which predict measurable Pb diffusion under such conditions. The implication is that resetting of zircon ages by diffusion during M2 was negligible in these dry granulite facies rocks. Imaging and Th/U,Y systematics indicate that the main processes affecting zircon were dissolution-reprecipitation in a closed system and solid-state recrystallization during and soon after M1. [source] Paleoproterozoic, High-Metamorphic, Metasedimentary Units of Siberian CratonACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009Lena URMANTSEVA Abstract: Sensitive, high-resolution ion microprobe zircon U,Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet,biotite, hypersthene,biotite, and cordierite-bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4,3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show core-rim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: ,2.7, ,2.3, and 1.95,2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton. [source] |