Home About us Contact | |||
Metal Transport (metal + transport)
Selected AbstractsMODELING METALS TRANSPORT AND SEDIMENT/WATER INTERACTIONS IN A MINING IMPACTED MOUNTAIN STREAM,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2004Brian S. Caruso ABSTRACT: The U.S. Environmental Protection Agency (USEPA) Water Quality Analysis Simulation Program (WASP5) was used to model the transport and sediment/water interactions of metals under low flow, steady state conditions in Tenmile Creek, a mountain stream supplying drinking water to the City of Helena, Montana, impacted by numerous abandoned hard rock mines. The model was calibrated for base flow using data collected by USEPA and validated using data from the U.S. Geological Survey (USGS) for higher flows. It was used to assess metals loadings and losses, exceedances of Montana State water quality standards, metals interactions in stream water and bed sediment, uncertainty in fate and transport processes and model parameters, and effectiveness of remedial alternatives that include leaving contaminated sediment in the stream. Results indicated that during base flow, adits and point sources contribute significant metals loadings to the stream, but that shallow ground water and bed sediment also contribute metals in some key locations. Losses from the water column occur in some areas, primarily due to adsorption and precipitation onto bed sediments. Some uncertainty exists in the metal partition coefficients associated with sediment, significance of precipitation reactions, and in the specific locations of unidentified sources and losses of metals. Standards exceedances are widespread throughout the stream, but the model showed that remediation of point sources and mine waste near water courses can help improve water quality. Model results also indicate, however, that alteration of the water supply scheme and increasing base flow will probably be required to meet all water quality standards. [source] Effects of estimates from different geochemical models on metal fate predicted by coupled speciation-fate models,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008Satyendra P. Bhavsar Abstract Coupled metal speciation-fate models are an improvement over stand-alone fate-transport models for accurately assessing metal fate and transport. These coupled models estimate fate-controlling partition coefficients using geochemical speciation/complexation models. Commercially available geochemical models are practical options for a two-step, loose coupling with fate-transport models. These models differ in their partitioning estimates because of differences in assumptions, databases, and so on. The present study examines the effects of differences in estimates from geochemical models on estimates of cationic metal fate using two geochemical models: the Windermere humic aqueous model (WHAM) and the minicomputer equilibrium+ model (MINEQL+). The results from each geochemical model were used as input to the fate module of TRANSPEC (a general, coupled metal transport and speciation model). The two versions of the TRANSPEC model were then used to assess the fate of five cationic metals (Cd, Cu, Ni, Pb, and Zn) in Ross Lake (Flin Flon, MB, Canada; alkaline, eutrophic, mine impacted), Kelly Lake (Sudbury, ON, Canada; circumneutral, mesotrophic, mine influenced), and Lake Tantaré (Quebec City, QC, Canada; acidic, oligotrophic, pristine). For relatively soluble metals (Cd, Ni, and Zn), the WHAM and MINEQL+ estimates of speciation/complexation were similar for Ross and Kelly lakes but differed for Lake Tantaré. These differences, however, did not result in significant differences in overall fate estimates. Marked differences were observed between the WHAM and MINEQL+ estimates of partition coefficient, Kd, for more particle-reactive Cu and Pb that translated into the greatest impact on fate in mesotrophic Kelly Lake, in which particle movement is important for fate. [source] Dynamic coupled metal transport-speciation model: Application to assess a zinc-contaminated lakeENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2004Satyendra P. Bhavsar Abstract A coupled metal transport and speciation/complexation model (TRANSPEC) has been developed to estimate the speciation and fate of multiple interconverting species in surface aquatic systems. Dynamic-TRANSPEC loosely, sequentially couples the speciation/complexation and fate modules that, for the unsteady state formulation, run alternatively at every time step. The speciation module first estimates species abundance using, in this version, MINEQL+ considering time-dependent changes in water and pore-water chemistry. The fate module is based on the quantitative water air sediment interaction (QWASI) model and fugacity/aquivalence formulation, with the option of using a pseudo-steady state solution to account for past discharges. Similarly to the QWASI model for organic contaminants, TRANSPEC assumes the instantaneous equilibrium distribution of metal species among dissolved, colloidal, and particulate phases based on ambient chemistry parameters that can be collected through conventional field methods. The model is illustrated with its application to Ross Lake (Manitoba, Canada) that has elevated Zn concentrations due to discharges over 70 years from a mining operation. Using measurements from field studies, the model reproduces year-round variations in Zn water concentrations. A 10-year projection for current conditions suggests decreasing Zn remobilization and export from the lake. Decreasing Zn loadings increases sediment-to-water transport but decreases water concentrations, and vice versa. Species distribution is affected by pH such that a decrease in pH increases metal export from the lake and vice versa. [source] Development of a coupled metal speciation-fate model for surface aquatic systemsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2004Satyendra P. Bhavsar Abstract A coupled metal transport and speciation model (TRANSPEC) has been developed for surface aquatic systems that explicitly considers the influence of metal speciation on fate. The TRANSPEC, which is general to most metal and surface aquatic systems, is constructed by sequentially coupling the speciation/complexation module (in this application MINEQL+) with the fugacity/aquivalence approach for the fate calculations. This model formulation increases the mechanistic detail, predictive power, and fidelity to reality of current fugacity-aquivalence fate models for metals by estimating aqueous speciation and complexation, rather than relying on empirically derived partition coefficients. A pseudo-steady state version of TRANSPEC was used to simulate Zn dynamics in Ross Lake (Flin Flon, MB, Canada) that received elevated metal and organic matter inputs for over 50 years. Field studies revealed that ZnS forms soluble ZnL, Zn2+, and ZnSO40 increasing pore water concentrations when surficial sediments turn oxic during fall. The model results for three seasonal scenarios suggest that Zn remobilization is driven by resuspension of insoluble ZnS and the contribution of diffusion is negligible, even during fall when ZnS dissolves to increase the concentration of soluble species under oxic conditions in the sediments. The low diffusive flux is due to the binding of Zn to colloidal dissolved organic matter (DOM) for which sediment-water diffusion is relatively slow, a result that was obtained as a result of considering metal speciation in the fate calculations. [source] Shrimp,a dynamic model of heavy-metal uptake in aquatic macrofaunaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2001Teresa Castro Simas Abstract A dynamic model for prediction of bioaccumulation in aquatic macrofauna is described. The model, entitled SHRIMP (Simulation of Heavy-metal Rate of Intake for Macrofaunal sPecies), consists of five coupled submodels, which simulate individual growth, population dynamics, metal transport in the abiotic part of the system, metal bioaccumulation at the organism level, and upscaling of individual contamination to the population scale. The sublethal effects of metal toxicity on individual and population levels are shown to act through the reduction of individual growth rates. The model was tested for cadmium and mercury using epibenthic crustacea from an estuarine system. Individual and population patterns of bioaccumulation were analyzed by comparing the simulated results of five different scenarios of dissolved metal concentrations. Model results suggest that the subtle effect of growth reduction due to metal toxicity is sufficient to cause a decrease on population numbers simply by affecting the growth of the mature females and males. [source] Fish and molluscan metallothioneinsFEBS JOURNAL, Issue 23 2005A structural, functional comparison Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a ,,domain that binds three bivalent metal ions and an ,,domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S -transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7 -MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7 -MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms. [source] Managing the manganese: molecular mechanisms of manganese transport and homeostasisNEW PHYTOLOGIST, Issue 3 2005Jon K. Pittman Summary Manganese (Mn) is an essential metal nutrient for plants. Recently, some of the genes responsible for transition metal transport in plants have been identified; however, only relatively recently have Mn2+ transport pathways begun to be identified at the molecular level. These include transporters responsible for Mn accumulation into the cell and release from various organelles, and for active sequestration into endomembrane compartments, particularly the vacuole and the endoplasmic reticulum. Several transporter gene families have been implicated in Mn2+ transport, including cation/H+ antiporters, natural resistance-associated macrophage protein (Nramp) transporters, zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPases. The identification of mutants with altered Mn phenotypes can allow the identification of novel components in Mn homeostasis. In addition, the characterization of Mn hyperaccumulator plants can increase our understanding of how plants can adapt to excess Mn, and ultimately allow the identification of genes that confer this stress tolerance. The identification of genes responsible for Mn2+ transport has substantially improved our understanding of plant Mn homeostasis. [source] Proteome analysis of chick embryonic cerebrospinal fluidPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2006Carolina Parada Abstract During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases. [source] Histidine-stimulated divalent metal uptake in human erythrocytes and in the erythroleukaemic cell line HEL.92.1.7THE JOURNAL OF PHYSIOLOGY, Issue 2 2004F. Oakley The uptake of 65Zn by human erythrocytes was investigated in the presence of high (40 mm) and low (5 mm) concentrations of histidine and 0,500 ,m cobalt, nickel, manganese and zinc. Varying concentrations of metal mono- and bis-histidine complexes will be formed and the inhibition of 65Zn uptake could be correlated with the calculated complex concentrations to investigate competition between metals. For each metal, the calculated concentrations of bis-histidine complex giving 50% inhibition of 65Zn uptake were similar at both 5 mm and 40 mm histidine. Manganese,bis-histidine appeared to have a much higher affinity for the binding site than the other metal,bis-histidine complexes, which had similar affinities to each other. Studies of the inhibition of histidine-stimulated 54Mn uptake by the addition of manganese confirmed that manganese,bis-histidine does act as a substrate for the transporter in a similar fashion to the other metals studied. In addition, human erythroleukaemic cells (HEL cells) were used as a model for erythroid precursor cells. l -histidine, but not d -histidine, stimulated 65Zn uptake in a saturable fashion. The other metals competed with zinc in a similar manner to that seen in erythrocytes, and the affinity for manganese,bis-histidine was much greater than for the bis-histidine complexes of the other three metals. Both the capacity for metal transport per cell, and the affinity of the transporter for the metal,bis-histidine complexes, were much greater in the HEL cells than in the erythrocyte. It is suggested that histidine-stimulated metal transport may play a role in the supply of metals to maturing erythroid cells. [source] |