Home About us Contact | |||
Metal Surface (metal + surface)
Selected AbstractsIonic Hydrogen Bonds Controlling Two-Dimensional Supramolecular Systems at a Metal SurfaceCHEMISTRY - A EUROPEAN JOURNAL, Issue 14 2007Dietmar Payer Abstract Hydrogen-bond formation between ionic adsorbates on an Ag(111) surface under ultrahigh vacuum was studied by scanning tunneling microscopy/spectroscopy (STM/STS), X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and molecular dynamics calculations. The adsorbate, 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), self-assembles at low temperatures (250,300,K) into the known open honeycomb motif through neutral hydrogen bonds formed between carboxyl groups, whereas annealing at 420,K leads to a densely packed quartet structure consisting of flat-lying molecules with one deprotonated carboxyl group per molecule. The resulting charged carboxylate groups form intermolecular ionic hydrogen bonds with enhanced strength compared to the neutral hydrogen bonds; this represents an alternative supramolecular bonding motif in 2D supramolecular organization. [source] Chromium-Free Corrosion Resistance of Metals by Ceramic CoatingJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2001Satomi Ono Metal surfaces can be improved in terms of thermal, mechanical, and chemical properties by a ceramic coating. The chromium-free corrosion resistance of stainless steel was achieved using a chemical solution method. Precursor solutions were prepared from metal alkoxides and were deposited on stainless-steel surfaces by dip coating and heat-treating at temperatures <500°C. The stainless steel was coated by silica, zirconia, and titania single-layer coating films, and/or coated by silica/zirconia and silica/titania double-layer coating films. The corrosion resistance was improved remarkably by a submicrometer silica-based coating on the stainless steel. [source] High Quality Factor Metallodielectric Hybrid Plasmonic,Photonic CrystalsADVANCED FUNCTIONAL MATERIALS, Issue 12 2010Xindi Yu Abstract A 2D polystyrene colloidal crystal self-assembled on a flat gold surface supports multiple photonic and plasmonic propagating resonance modes. For both classes of modes, the quality factors can exceed 100, higher than the quality factor of surface plasmons (SP) at a polymer,gold interface. The spatial energy distribution of those resonance modes are carefully studied by measuring the optical response of the hybrid plasmonic,photonic crystal after coating with dielectric materials under different coating profiles. Computer simulations with results closely matching those of experiments provide a clear picture of the field distribution of each resonance mode. For the SP modes, there is strong confinement of electromagnetic energy near the metal surface, while for optical modes, the field is confined inside the spherical particles, far away from the metal. Coating of dielectric material on the crystal results in a large shift in optical features. A surface sensor based on the hybrid plasmonic,photonic crystal is proposed, and it is shown to have atomic layer sensitivity. An example of ethanol vapor sensing based on physisorption of ethanol onto the sensor surface is demonstrated. [source] Customized Electronic Coupling in Self-Assembled Donor,Acceptor NanostructuresADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Dimas G. de Oteyza Abstract Charge transfer processes between donor,acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface-sensitive microscopy, synchrotron radiation spectroscopy, and state-of-the-art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule,substrate interactions, hybridization, and charge transfer in model donor,acceptor assemblies at metal-organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor,acceptor assemblies. In particular, studying the self-assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper-phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate. [source] Controlling Electron and Hole Charge Injection in Ambipolar Organic Field-Effect Transistors by Self-Assembled MonolayersADVANCED FUNCTIONAL MATERIALS, Issue 15 2009Xiaoyang Cheng Abstract Controlling contact resistance in organic field-effect transistors (OFETs) is one of the major hurdles to achieve transistor scaling and dimensional reduction. In particular in the context of ambipolar and/or light-emitting OFETs it is a difficult challenge to obtain efficient injection of both electrons and holes from one injecting electrode such as gold since organic semiconductors have intrinsically large band gaps resulting in significant injection barrier heights for at least one type of carrier. Here, systematic control of electron and hole contact resistance in poly(9,9-di- n -octylfluorene- alt -benzothiadiazole) ambipolar OFETs using thiol-based self-assembled monolayers (SAMs) is demonstrated. In contrast to common believe, it is found that for a certain SAM the injection of both electrons and holes can be improved. This simultaneous enhancement of electron and hole injection cannot be explained by SAM-induced work-function modifications because the surface dipole induced by the SAM on the metal surface lowers the injection barrier only for one type of carrier, but increases it for the other. These investigations reveal that other key factors also affect contact resistance, including i) interfacial tunneling through the SAM, ii) SAM-induced modifications of interface morphology, and iii) the interface electronic structure. Of particular importance for top-gate OFET geometry is iv) the active polymer layer thickness that dominates the electrode/polymer contact resistance. Therefore, a consistent explanation of how SAM electrode modification is able to improve both electron and hole injection in ambipolar OFETs requires considering all mentioned factors. [source] Molecular dynamics study for dissociation phenomena of a gas molecule on a metal surfaceHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2008Takashi Tokumasu Abstract The dissociation phenomena of a gas molecule on a metal surface were analyzed by the molecular dynamics method. A platinum (111) surface and hydrogen were chosen as the metal surface and the gas molecule, respectively. The embedded atom method was used as the interaction between atoms in order to express the dependence of electron density. The parameters were determined so that the results such as the electron density, adsorption energy of an H atom on a Pt(111) surface, and the interaction between H atoms of an H2 molecule obtained by the EAM method were consistent with those obtained by the density functional theory or empirical function. Collisions between a hydrogen molecule and the platinum surface were simulated by the molecular dynamics method, and the dissociation probability was obtained. Using these results, the effect of the motion of the surface atoms or the hydrogen molecule on the dissociation probability was analyzed. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20222 [source] Non-Linear Effect of Modifier Composition on Enantioselectivity in Asymmetric Hydrogenation over Platinum MetalsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2003Wolf-Rüdiger Huck Abstract Prominent non-linear behavior was observed when mixtures of cinchona alkaloids were applied as chiral modifiers in enantioselective hydrogenations over Pt/Al2O3 and Pd/TiO2. The phenomenon is traced to differences in the strength and geometry of alkaloid adsorption on the metal surface. In ethyl pyruvate hydrogenation under close to ambient conditions the weaker adsorbing quinidine (QD) outperformed the generally preferred modifier cinchonidine (CD) and afforded the highest ee (96,98%) at 1,5,bar. In the partial hydrogenation of 4-methoxy-6-methyl-2-pyrone to the dihydro derivative 4 CD gave 73% ee to (S)- 4 and QD provided 72% ee to (R)- 4, and still the alkaloid mixture containing less than 5,mol,% CD afforded 15% ee to (S)- 4. This non-linear behavior may be advantageous in asymmetric synthesis as low purity chiral compounds can be applied as efficient modifiers for Pt or Pd. [source] In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiographyJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2008B.V. Kjellerup Abstract Aims:, To examine the activity of bacteria involved in cathodic depolarization and surface corrosion on stainless steel in an in situ model system. Methods and Results:, The microautoradiographic technique (MAR) was used to evaluate the activity of bacterial populations on stainless steel surfaces with a single cell resolution. Anaerobic uptake and fixation of 14C-labelled bicarbonate occurred within corrosion sites in the absence of atmospheric hydrogen or other external electron donors, whereas it was taken up and fixed by bacteria at all other stainless steel surfaces in the presence of atmospheric hydrogen. This indicates that the bacteria utilized electrons originating from the corrosion sites due to the ongoing corrosion (cathodic depolarization). Conclusion:, Under in situ conditions, bacteria were fixating 14C-labelled bicarbonate at corrosion sites in the absence of atmospheric hydrogen. This indicates that electrons transferred to the bacteria provided energy for bicarbonate fixation due to cathodic depolarization. Significance and Impact of the Study:, Application of the MAR method showed ongoing biocorrosion in the applied in situ model system and allowed in situ examination of bacterial activity on a single cell level directly on a metal surface providing information about potential corrosion mechanisms. Furthermore, application of fluorescence in situ hybridization in combination with MAR allows for identification of the active bacteria. [source] Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: Comparison between alumina and cobalt,chrome headsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008Chong Bum Chang Abstract We aimed to investigate the transfer of metal to both ceramic (alumina) and metal (cobalt,chrome) heads that were scraped by a titanium alloy surface under different load conditions. The ceramic and metal heads for total hip arthroplasties were scraped by an acetabular metal shell under various loads using a creep tester. Microstructural changes in the scraped area were visualized with a scanning electron microscope, and chemical element changes were assessed using an energy dispersive X-ray spectrometry. Changes in the roughness of the scraped surface were evaluated by a three-dimensional surface profiling system. Metal transfer to the ceramic and metal heads began to be detectable at a 10 kg load, which could be exerted by one-handed force. The surface roughness values significantly increased with increasing test loads in both heads. When the contact force increased, scratching of the head surface occurred in addition to the transfer of metal. The results documented that metallic debris was transferred from the titanium alloy acetabular shell to both ceramic and metal heads by minor scraping. This study suggests that the greatest possible effort should be made to protect femoral heads, regardless of material, from contact with metallic surfaces during total hip arthroplasty. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] A Comparison of Cleaning Regimes for the Effective Removal of Fingerprint Deposits from BrassJOURNAL OF FORENSIC SCIENCES, Issue 1 2010Emma Paterson Abstract:, Effective removal of fingerprint deposits is crucial for experimentation related to the corrosion of metals by fingerprint deposits. Such removal is also necessary prior to deposition of test fingerprints. The effectiveness of four regimes in removing fingerprint deposits from brass is considered. Sustained wiping of the deposit with a tissue at applied pressures of up to c. 1430 Pa or rubbing while the brass was immersed in acetone both failed to remove completely all traces of fingerprint deposits. Heating the brass to 600°C was an effective remover; however, this also oxidized the surface of the metal except where inhibited by fingerprint deposits. The most effective regime, and the only one of the four that removed all traces of deposit without affecting the properties of the metal surface, was immersion in warm soapy water while rubbing with a tissue. We propose this as the preferred method for fingerprint removal. [source] Bonding abutments to cast metal post/cores: comparison of pre-treatment effectsJOURNAL OF ORAL REHABILITATION, Issue 2 2003H. Kajihara summary, Bond strengths were evaluated for (1) metal primer systems when the metal was contaminated by a dentin conditioner and (2) a dentin adhesive system when dentin was contaminated by metal primers. Disc specimens were cast in a silver,palladium,copper,gold (Ag,Pd,Cu,Au) alloy and dentin specimens were prepared by grinding the labial surface of bovine teeth. Specimens were treated with (1) metal primer alone, (2) dentin conditioner alone, (3) metal primer followed by dentin conditioner and (4) dentin conditioner followed by metal primer. A resin cement was poured into a mould over a restricted bonding area and allowed to set. Metal specimens were shear stressed to failure after thermocycling (4,60 °C; 20 000 cycles). Dentin specimens were stressed in the same manner after 24 h of immersion in 37 °C water. The results were compiled and analysed by anova. Data for dentin specimens treated with dentin conditioner only or with the combination of dentin conditioner and metal primer were not significantly different, statistically. Post-thermocycled groups indicated that bond strengths to the alloy significantly decreased (P < 0·05) when the primed metal surface was contaminated with dentin conditioner regardless of the timing of its application. [source] The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: A comparison of serum, synovial fluid, albumin, EDTA, and waterJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 8 2006A. C. Lewis Abstract Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1587,1596, 2006 [source] Alkyl halides reactions with cathodes or with magnesium.JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 12 2006Grignard reagent studied with radical clocks. Abstract In the mechanism of reaction of Grignard reagent formation for alkyl halides (RX), it is generally assumed that the alkyl radical, formed by the electron transfer from the metal to this halide, reacts rapidly with the paramagnetic MgX, species. The previous comparisons of aryl halides reactivity toward magnesium and their reactivity toward a cathode strongly suggested that MgX, species are not, for the aryl halides, compulsory to rationalise the observed facts. The aryl radicals formed by electron transfer from the metal to the aryl halide would undergo a rapid second electron transfer to yield carbanions transformed into RMgX by reaction with MgX2. In contrast, for the alkyl halides, the reduction of the rapidly formed alkyl radicals into carbanions has seldom been discussed as a possible fate for these radicals, the main discussed fates being dimerisation, disproportionation, hydrogen abstraction from the solvent, rearrangement or coupling with MgX, radicals. Two main differences distinguish the reactivity of alkyl halides from their aryl halides counterpart. First, the radical anions of aryl halides may have a given lifetime whereas electron transfer to alkyl halides is concerted with the cleavage of the molecule. Second, the aryl radicals display far stronger oxidising properties than the alkyl radicals. The counterpart of this property is that aryl carbanions display weaker reducing properties than the alkyl ones. In this report, putting in perspective Grignard reaction and the experimental results obtained with identical radical clocks in electrochemistry, we tentatively provide an answer to the question raised in the title. The comparison of electrochemical patterns of reactivity of selected alkyl halides and the evolutions of yields in the preparation of Grignard reagent suggest a new explanation for the lower yields generally observed when alkyl iodides are the starting substrates. It involves an autocatalytic reaction where carbanionic species formed from the alkyl radicals and diffusing away from the metal surface, transfer one electron to the alkyl halide; the result would be the creation of two radicals leading to an increased amount of by-products. If the carbanionic mechanism were to be retained for the formation of alkyl Grignard reagent one would have to admit that the magnesium surface behaves as a cathode displaying high current densities reminiscent of microelectrodes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamerJOURNAL OF RAMAN SPECTROSCOPY, Issue 3 2010Cynthia V. Pagba Abstract Aptamers are single-stranded oligonucleotides that selectively bind to their target molecules owing to their ability to form secondary structures and shapes. The 15-mer (5,-GGTTGGTGTGGTTGG-3,) DNA thrombin-binding aptamer (TBA) binds to thrombin following the formation of a quadruplex structure via the Hoogsten-type G,G interactions. In the present study, Raman and SERS spectra of TBA and thiolated TBA (used to facilitate covalent bonding to metal nanoparticle) in different conditions are investigated. The spectra of the two analogs exhibit vibrations, such as the C8N7H2 deformation band at ,1480 cm,1 of the guanine tetrad, that are characteristic of the quadruplex structure in the presence of K+ ions or at low temperature. Interestingly, SERS spectra of the two analogs differ markedly from their respective normal Raman spectra, possibly due to changes in the conformation of the aptamer upon binding, as well as to the specific interaction of individual vibrational modes with the metal surface. In addition, the SERS spectra of the thiolated aptamer show significant changes with different concentrations, which may be due to different orientation of the molecule with respect to the metal surface. This study provides useful information for the development of label-free aptamer-based SERS sensors and assays. Copyright © 2009 John Wiley & Sons, Ltd. [source] IR, Raman and SERS spectra of ethyl salicylateJOURNAL OF RAMAN SPECTROSCOPY, Issue 12 2009C. Yohannan Panicker Abstract The IR and Raman spectra of ethyl salicylate were recorded and analyzed. The surface enhanced Raman scattering (SERS) spectrum was recorded in a silver colloid. The vibrational wavenumbers of the compound have been computed using the Hartree-Fock/6-31G* basis. The direction of charge transfer contribution to SERS has been discussed from the frontier orbital theory. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface and the presence of ring vibrations and out-of-plane ring modes in the SERS spectrum suggests a flat orientation of the molecule on the silver surface. The first hyperpolarizability is calculated and the calculated molecular geometry has been compared with the reported similar structures. Copyright © 2009 John Wiley & Sons, Ltd. [source] Some aspects of SERS temporal fluctuations: analysis of the most intense spectra of hydrogenated amorphous carbon deposited on silverJOURNAL OF RAMAN SPECTROSCOPY, Issue 11 2007Andrzej Kudelski Abstract Surface-enhanced Raman scattering (SERS) spectra of hydrogenated amorphous carbon (aC:H) deposited on silver substrates have been recorded with a confocal Raman microscope. When scattered radiation is collected during a short time from an area of a few square micrometres, the subsequently measured SERS spectra often exhibit strong temporal changes (fluctuations). In this paper we present examples of spectra for which the intensity maxima of the fluctuating narrow Raman bands are significantly higher than that of the background (the background is usually dominated by two broad Raman bands centred at about 1350 and 1590 cm,1). In a series of successively measured spectra, one can find spectra with noticeably different total integral intensity. This suggests that the results of averaging the spectra revealing strong and weak fluctuations may be different (at least in intensity). The influence of some electrolytes on the SERS spectral fluctuations is also analysed. Our experiments revealed that the efficiencies of quenching of the SERS spectral fluctuations by various electrolytes are significantly different. We suggest that only anions directly interacting with the metal surface quench strong SERS fluctuations, and that the large differences between chloride and perchloride solutions are caused by differences in the strength of interaction of Cl, and ClO4, anions with the silver surface. Copyright © 2007 John Wiley & Sons, Ltd. [source] Surface-enhanced resonance Raman scattering using pulsed and continuous-wave laser excitationJOURNAL OF RAMAN SPECTROSCOPY, Issue 6-7 2005Rachael E. Littleford Abstract Pulsed and continuous-wave (CW) lasers were compared as excitation sources for surface-enhanced resonance Raman scattering (SERRS). CW excitation provided SERRS spectra with a greater signal-to-noise ratio and more sensitive detection by a factor of ,50 compared with the high peak power, low repetition rate pulsed configuration used. The SERRS intensity using a pulsed laser produced a non-linear response with respect to changes in power of the laser. At powers of less than ,0.012 mW, the absolute intensity under the peaks of the CW and pulsed SERRS spectra converged, suggesting that lower peak power, high repetition rate systems may be more effective excitation sources for SERRS. Transmission electron microscopy of pulsed laser-irradiated silver particles showed significant sample damage and morphological changes. This problem was overcome with the use of a recirculating large-volume flow cell system, providing a fresh sample for each measurement. A picosecond-resolved time delay experiment found that SERRS intensity decreased by ,60% when exposed to a 400 nm pump pulse and probed with a 529 nm pulse. As the time delay between pump and probe increased the system recovered gradually to ,60% of the original SERRS intensity after 50 ps, where it remained constant. This suggests that the surface bonding between the silver and the dye is significantly perturbed, with some nanoscale diffusion occurring of the dye away from the metal surface. Hence chemical enhancement is temporarily prevented and electromagnetic enhancement is reduced as a function of 1/r3 as the dye moves away from the surface. Additionally, transient heating of the colloidal particles caused by the pulsed laser may also lead to plasmon shifts and changes in absorption intensity. Other factors such as surface annealing or decomposition of the silver particle or dye due the extreme temperature conditions may account for the permanent loss in SERRS intensity. Copyright © 2005 John Wiley & Sons, Ltd. [source] Monolayers of sulfur-containing molecules at metal surfaces as studied using SERS: 3, 3,-thiodipropionic acid and 3-mercaptopropionic acid adsorbed on silver and copperJOURNAL OF RAMAN SPECTROSCOPY, Issue 6-7 2005Andrzej Kudelski Abstract The modification of metal surfaces with self-assembled thiol monolayers is the subject of intensive studies owing to both its fundamental interest in surface chemistry and its potential technological significance. In this work, the applicability of surface-enhanced Raman scattering (SERS) to determine the conformation and pKa values of ,-terminated thiol molecules was investigated. 3, 3,-Thiodipropionic acid (TDPA) and 3-mercaptopropionic acid (MPA) monolayers were spontaneously formed on silver and copper surfaces by adsorption from TDPA and MPA solutions, respectively. The structure of the monolayers formed was determined from SERS measurements. The SERS investigations showed that molecules forming TDPA monolayers prefer to adopt a gauche conformation of the,S,C,C chains, whereas in MPA monolayers formed from 1 mM MPA aqueous solution a significant part of the adsorbed molecules adopts a trans conformation. Formation on the metal surface of an MPA monolayer with high surface coverage of MPA makes dissociation of the carboxylic groups of MPA significantly more difficult. Analogous changes in the strength of similar adsorbed compounds have been reported by other groups. In contrast to those results, we found that the formation of monolayers from TDPA increases its acidic strength even at high surface coverage when monolayers are formed from relatively concentrated TDPA solutions. Probably the interaction of carboxylic groups with the metal surface is easier for TDPA than for MPA for geometric reasons. We consider that ionization of carboxylic groups increases the strength of this interaction. Copyright © 2005 John Wiley & Sons, Ltd. [source] Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticlesJOURNAL OF RAMAN SPECTROSCOPY, Issue 11 2004M. V. Cañamares Abstract FT-Raman and surface-enhanced Raman scattering (SERS) spectroscopy were applied in the vibrational characterization and study of the adsorption and acidity behavior of the highly fluorescent anthraquinone dye alizarin on Ag colloids prepared by chemical reduction with hydroxylamine hydrochloride. The SERS spectra were obtained at different conditions of pH, excitation wavelength and pigment concentration in order to deduce the adsorption mechanism of this molecule. On the basis of the results found we propose an adsorption model for alizarin, which has a different acidic behavior on the metal surface to that in solution. On the metal the deprotonation order of the OH groups changes with respect to the aqueous solution, the OH in position 1 being the first to be ionized instead of that in position 2 as occurs in solution. The two main alizarin forms identified on the metal surface correspond to the mono- and dianionic alizarin species. Copyright © 2004 John Wiley & Sons, Ltd. [source] Structures of monolayers formed from different HS,(CH2)2,X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scatteringJOURNAL OF RAMAN SPECTROSCOPY, Issue 11 2003Andrzej Kudelski Abstract Molecules of 2-aminoethanethiol (cysteamine, CYS), 2-mercaptoethanol (MET), 3-mercaptopropionic acid (MPA), sodium 2-mercaptoethanesulphonate (MES) and 1-propanethiol (PTH) were spontaneously chemisorbed on electrochemically activated silver, copper and gold surfaces. The structure of monolayers formed was studied with surface-enhanced Raman scattering (SERS). In CYS and MPA monolayers the relative surface concentration of gauche conformers was higher than in MET, PTH and MES monolayers. This is probably due to double bonding to the metal surface by a fraction of adsorbed MPA and CYS molecules (via the sulphur moiety and the terminal carboxylic or amino group). In CYS, MET, MPA and PTH monolayers the surface concentration of trans conformers is significantly higher on Ag than on Au or Cu. The structures of MES monolayers on Ag, Au and Cu are similar, with very high surface concentrations of trans conformers. Statistically, the wavenumbers of ,(C,S) bands of both gauche and trans conformers are the highest on Au, slightly lower on Ag and the lowest for Cu. However the positions of ,(C,S) bands are also sensitive to the other parameters (e.g. C,C,S,metal torsion angle, the overall ordering of the monolayer). Therefore, the wavenumbers of ,(C,S) bands are not good indicators of differences in the interaction between chemisorbed thiols and the metal substrates. Desorption measurements suggest that part of the adsorbed molecules is bonded significantly weaker than the rest. Thiolate monolayers on Cu decomposed relatively easily, forming a layer of copper sulphide. The strength of adsorbed MPA acid is similar on all substrates. Copyright © 2003 John Wiley & Sons, Ltd. [source] Theoretical description of the practical possibility of stress corrosion cracking from crevice corrosion sitesMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 1 2005S. Wang Abstract Stress corrosion cracking (SCC) from crevice corrosion sites had been found in an experimental work at polarization potential of + 200 mVSCE. In that work, an occluded U-bend specimen of Type 316L (UNS S31603) stainless steel was used. The testing was done in sodium chloride (NaCl) solution. Based on that work, the practical possibility of SCC from the occluded U-bend specimen was described theoretically. It was shown that it would also be possible for SCC to occur in practice (i.e. at practical corrosion potential), but the crevice needs to be tighter. Meanwhile, it would take a longer time for obvious SCC to emerge. For a practical crevice usually formed by placing a crevice former on a large uniform metal surface, the crevice geometry may have little effect on SCC although the crevice can sustain an acidified solution more easily than pitting. The possibility of SCC should mainly depend on the corrosion system itself, i.e. material and environment. [source] Initiation and propagation of stainless steel pitting corrosion under heat fluxMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 12 2003T. Pro nichtrostender Stahl; Lochkorrosion; Wärmeübergang; Wärmefluss Abstract An effect of heat flux on initiation and propagation of pitting corrosion of austenitic stainless steel in chloride environment has been studied using electrochemical and exposure methods. The experiments were performed at constant surface temperature of 60°C and heat flux from , 15 to + 74 kW m,2. The presence of heat flux from metal to solution shifted the breakdown potential towards noble values and lowered the pit density, whereas the pit propagation rate increased. Presence of maximum heat flux caused, in comparison with isothermal conditions, increase of the breakdown potential by approx. 100 mV, reduction of pit density by 30% and increase of the average pit depth by 40%. The positive effect of heat flux from metal to solution was given mainly by improving the protective ability of the passive film, as the amount of oxygen available at the metal surface increased. With a smaller significance, the effect of intensified mass transfer, which made accumulation of the chloride ions on the surface more difficult, occurred. Entstehung und Fortschreiten der Lochkorrosion von nichtrostendem Stahl bei Wärmefluss Der Einfluss von Wärmefluss auf die Entstehung und das Fortschreiten der Lochkorrosion bei austenitischen nichtrostenden Stählen in chloridhaltiger Umgebung wurden unter Verwendung elektrochemischer Methoden und in Auslagerungsversuchen untersucht. Die Versuche wurden bei einer konstanten Oberflächentemperatur von 60°C und einem Wärmefluss von , 15 bis 74 kWm2 durchgeführt. Ein Wärmefluss vom Metall hin zur Lösung verschob das Durchbruchspotential hin zu edleren Werten, es verringerte sich die Lochdichte, während eine Zunahme der Lochbildungsrate erfolgte. Ein Maximum des Wärmeflusses bewirkte im Vergleich mit isothermen Bedingungen eine Zunahme des Potentials um ca. 100 mV, eine Verringerung der Lochdichte um 30% und eine Zunahme des Wertes für die Lochtiefe um 40%. Der positive Einfluss des Wärmeflusses in Richtung vom Metall zur Lösung ergab im wesentlichen eine Verbesserung der Schutzwirkung des Passivfilms, da sich die verfügbare Menge Sauerstoff an der Metalloberfläche erhöhte. Weniger signifikant war der Effekt eines erhöhen Stofftransportes, der eine Akkumulation von Chlorid-Ionen an der Oberfläche erschwerte. [source] Adlayer structure of octa-alkoxy-substituted copper(II) phthalocyanine on Au(111) by electrochemical scanning tunneling microscopyMICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2008Li Wang Abstract Electrochemical scanning tunneling microscopy (ECSTM) has been used to examine the adlayer of octa-alkoxy-substituted copper(II) phthalocyanines (CuPc(OC8H17)8) on Au(111) in 0.1 M HClO4, where the molecular adlayer was prepared by spontaneous adsorption from a benzene solution containing this molecule. Topography STM scans revealed long-range ordered, interweaved arrays of CuPc(OC8H17)8 with coexistent rectangular and hexagonal symmetries. High-quality STM molecular resolution yielded the internal molecular structure and the orientation of CuPc(OC8H17)8 admolecules. These STM results could shed insight into the method of generating ordered molecular assemblies of phthalocyanine molecules with long-chained substitutes on metal surface. Microsc. Res. Tech., 2008. © 2007 Wiley-Liss, Inc. [source] A 2.4-GHz dual-patch RFID tag antenna scattering analysisMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 11 2006K. J. Lee Abstract A dielectric-filled metal-patch antenna combinable with an internal RFID IC chip is introduced. This antenna is designed to operate either in an empty space or on top of large metal surface. The proposed tag antenna's dimension is adjusted to produce the maximum amount of scattered power due to tag's internal-impedance modulation for the normal incidence angle. A 2.44-GHz dual-patch antenna is fabricated to demonstrate the amounts of impedance-modulated scattered power at various reader-to-tag angles depending on the tag antenna radiation pattern. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 2241,2244, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21931 [source] Thin absorbing structure for all incidence angles based on the use of a high-impedance surfaceMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 3 2003S. A. Tretyakov Abstract It is shown that thin mushroom layers (high-impedance surfaces realized as regular arrays of small patches at a small distance from a metal surface) can be used as radar-absorbing structures whose performance does not change with the incidence angle for TM-polarized waves. The key role of the vias connectors between the patches and the ground plane is explained, and potential performance demonstrated in examples. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 175,178, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11006 [source] Surface Plasmon-coupled Polarized Emission of N-Acetyl- l -Trytophanamide,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2004Ignacy Gryczynski We report an observation of ultraviolet (UV) surface plasmon-coupled emission (SPCE) of N-acetyl- l -tryptophanamide (NATA). The sample was spin coated from poly(vinyl alcohol) (PVA) solution on 20 nmaluminium film deposited on a quartz substracte. The directional UV SPCE occurs within a well-defined narrow angle at 52dG from the normal to the coupling hemicylinder quartz prism. The NATA directional emission is highly p polarized as expected for surface plasmon-coupled radiation. The 10 nm protective SiO2 layer deposited on top of the aluminum film significantly neutralized the fluorophore quenching by the metal surface. SPCE of NATA demonstratees a remarkable intrinsic dispersive property,the maximum of the emission spectrum depends on the observation angle. The efficient spectral resolution of SPCE can be used in the construction of miniaturized spectrofluorometers. The observation of SPCE of tryptophan opens a new possibility for the study of many unlabeled proteins with the technique complementary to surface plasmon resonance analysis. [source] Epitaxial growth of carbon caps on Ni for chiral selectivityPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 13 2006S. Reich Abstract We suggest guiding principles for chirality-selective growth of single-walled carbon nanotubes. The chirality of a tube is determined by the carbon cap that forms during nucleation. Controlling the tube chirality requires controlling the nucleation stage. Certain caps can be favored by their epitaxial relationship to a metal surface. Lattice matched caps require ,0.1 eV/C less formation energy on a Ni surface than non-lattice matched cap structures. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Adsorption of 6-mercaptopurine and 6-mercaptopurine-ribosideon silver colloid: A pH-dependent surface-enhanced Raman spectroscopy and density functional theory study.BIOPOLYMERS, Issue 6 2005Abstract Surface-enhanced Raman spectroscopy (SERS) has been applied to characterize the interaction of 6-mercaptopurine-ribose (6MPR), an active drug used in chemotherapy of acute lymphoblastic leukemia, with a model biological substrate at therapeutic concentrations and as function of the pH value. Therefore, a detailed vibrational analysis of crystalline and solvated (6MPR) based on Density Functional Theory (DFT) calculations of the thion and thiol tautomers has been performed. 6MPR adopts the thion tautomeric form in the polycrystalline state. The SERS spectra of 6MPR and 6-mercaptopurine (6MP) recorded on silver colloid provided evidence that the ribose derivative shows different adsorption behavior compared with the free base. Under acidic conditions, the adsorption of 6MPR on the metal surface via the N7 and possibly S atoms was proposed to have a perpendicular orientation, while 6MP is probably adsorbed through the N9 and N3 atoms. Under basic conditions both molecules are adsorbed through the N1 and possibly S atoms, but 6MP has a more tilted orientation on the silver colloidal surface while 6MPR adopts a perpendicular orientation. The reorientation of the 6MPR molecule on the surface starts at pH 8 while in the case of 6MP the reorientation starts around pH 6. Under basic conditions, the presence of the anionic molecular species for both molecules is suggested. The deprotonation of 6MP is completed at pH 8 while the deprotonation of the riboside is finished at pH 10. For low drug concentrations under neutral conditions and for pH values 8 and 9, 6MPR interacts with the substrate through both N7 and N1 atoms, possibly forming two differently adsorbed species, while for 6MP only one species adsorbed via N1 was evidenced. © 2005 Wiley Periodicals, Inc. Biopolymers 78: 298,310, 2005 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Study of interaction between aspartic acid and silver by surface-enhanced Raman scattering on H2O and D2O solsBIOPOLYMERS, Issue 5 2001J. F. Arenas Abstract Three different surface-enhanced Raman scattering (SERS) spectra are recorded for aspartic acid on H2O silver sols under different concentrations and pH values. The analysis of the results shows that it interacts with the metal surface in its dianionic form in two different ways, depending on the pH and concentration. Moreover, in some cases the fumarate anion is detected, which results from the chemical surface transformation of the aspartate. The N -deuterated aspartic acid adsorbed on the D2O silver sols gives rise to only one SERS spectrum as a consequence of the interaction of amino and carboxylate functional groups of the dianion with the metal, independent of the concentration and pD. © 2001 John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 62: 241,248, 2001 [source] The Role of Surface Oxides in NOx Storage Reduction CatalystsCHEMCATCHEM, Issue 6 2010Jelena Jelic Dr. Monte Carlo or bust: First-principles kinetic Monte Carlo simulations are used to examine NO oxidation over Pd(101)/Pd(100). Under typical conditions for NO oxidation in a NOx storage reduction system (600,K, 105,Pa,O2, 100,Pa,NO), turnover frequencies are comparable to those of Pt(111) surfaces, implying that the surface oxide is similar in reactivity to an oxygen-covered metal surface. [source] |