Metal Foils (metal + foil)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Combustion Model for Pyrophoric Metal Foils

PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 6 2003
Caroline
Abstract A model for the combustion of pyrophoric metal foils has been developed. The diffusive mass transport, heat transport, and chemical reactions of porous iron foils have been described. The temperature and radiated energy of these materials has been predicted as a function of the physical characteristics of the material (porosity, pore size, specific surface area) for different atmospheric conditions (temperatures and oxygen concentrations varied with altitude and wind velocity). [source]


Freestanding Three-Dimensional Copper Foils Prepared by Electroless Deposition on Micropatterned Gels,

ADVANCED MATERIALS, Issue 6 2005
K. Smoukov
Metal foils of complex, three-dimensional topographies are prepared by electroless deposition on surfaces of micropatterned hydrogel supports (see Figure). The foils can either be freestanding or supported by a photocurable polymer. It is possible to selectively metallize different portions of the micropattern embossed on the gel surface, and thus to prepare either continuous or membrane-like metal films. [source]


A novel growth method for ZnAl2O4 single crystals

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2006
K. Kumar
Abstract ZnAl2O4 is a well-known wide band gap compound semiconductor (Eg=3.8eV), ceramic, opto-mechanical, anti-thermal coating in aero-space vehicles and UV optoelectronic devices. A novel method for the growth of single crystals of a ternary oxide material was developed as a fruit of a long term work. Material to be grown as metal incorporated single crystal was taken as precursor and put into a bath containing acid as reaction speed up reagent (catalyst) as well as solvent with a metal foil as cation scavenger. Using this method, ZnAl2O4 crystals having hexagonal facets are prepared from a single optimized bath. Structural and compositional properties of crystals were studied using Philips, Xpert - MPD: X-ray diffractometer and Philips, ESEM-TMP + EDAX. Thus technique was found to be a new low cost and advantageous method for growth of single crystals of ternary oxide a material. We hope that these data be helpful either as a scientific or technical basis in material processing. Dedicated to Prof. P. Ramasamy © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [source]


Design of a vacuum-compatible high-precision monochromatic beam-position monitor for use with synchrotron radiation from 5 to 25,keV

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2000
R. W. Alkire
The Structural Biology Center beamline, 19ID, has been designed to take full advantage of the highly intense undulator radiation and very low source emittance available at the Advanced Photon Source. In order to keep the X-ray beam focused onto the pre-sample slits, a novel position-sensitive PIN diode array has been developed. The array consists of four PIN diodes positioned upstream of a 0.5,µm-thick metal foil placed in the X-ray beam. Using conventional difference-over-the-sum techniques, two-dimensional position information is obtained from the metal foil fluorescence. Because the full X-ray beam passes through the metal foil, the true beam center-of-mass is measured. The device is compact, inexpensive to construct, operates in a vacuum and has a working range of 8,mm × 10,mm that can be expanded with design modifications. Measured position sensitivity is 1,2,µm. Although optimized for use in the 5,25,keV energy range, the upper limit can be extended by changing metals or adjusting foil thickness. [source]


Towards advanced circuit board materials: adhesion of copper foil to ultra-high molecular weight polyethylene composite

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2002
Dmitry
Abstract Polyethylene based composites are attractive materials for advanced circuit board applications because of their unique combination of properties: low dielectric constant and loss factor, light weight, high flexural modulus and low thermal expansion coefficient controlled in all spatial directions. This investigation describes a process to consolidate chopped fibers of ultra-high molecular weight polyethylene concurrently with its bonding to a copper foil. Bonding is affected by a thin sheet of low-density polyethylene, incorporating a crosslinking agent with a concentration gradient across the sheets thickness. In this single step process, the composite material is formed and bonded to the metal foil, achieving good adhesion without the use of extraneous glue. Copyright © 2002 John Wiley & Sons, Ltd. [source]


An in situ method for the study of strain broadening using synchrotron X-ray diffraction

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2007
C. C. Tang
A tensonometer for stretching metal foils has been constructed for the study of strain broadening in X-ray diffraction line profiles. This device, which is designed for use on powder diffractometers and was tested on Station 2.3 at Daresbury Laboratory, allows in situ measurements to be performed on samples under stress. It can be used for data collection in either transmission or reflection modes using either symmetric or asymmetric diffraction geometries. As a test case, measurements were carried out on an 18,µm-thick copper foil experiencing strain levels of up to 5% using both symmetric reflection and symmetric transmission diffraction. All the diffraction profiles displayed peak broadening and asymmetry which increased with strain. The measured profiles were analysed by the fundamental-parameters approach using the TOPAS peak-fitting software. All the observed broadened profiles were modelled by convoluting a refineable diffraction profile, representing the dislocation and crystallite size broadening, with a fixed instrumental profile predetermined using high-quality LaB6 reference powder. The deconvolution process yielded `pure' sample integral breadths and asymmetry results which displayed a strong dependence on applied strain and increased almost linearly with applied strain. Assuming crystallite size broadening in combination with dislocation broadening arising from f.c.c. a/2,110,{111} dislocations, the variation of mechanical property with strain has been extracted. The observation of both peak asymmetry and broadening has been interpreted as a manifestation of a cellular structure with cell walls and cell interiors possessing high and low dislocation densities. [source]


Combustion Model for Pyrophoric Metal Foils

PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 6 2003
Caroline
Abstract A model for the combustion of pyrophoric metal foils has been developed. The diffusive mass transport, heat transport, and chemical reactions of porous iron foils have been described. The temperature and radiated energy of these materials has been predicted as a function of the physical characteristics of the material (porosity, pore size, specific surface area) for different atmospheric conditions (temperatures and oxygen concentrations varied with altitude and wind velocity). [source]


Analytical Model for Predicting Thermal Bridge Effects due to Vacuum Insulation Panel Barrier Envelopes,

BAUPHYSIK, Issue 1 2008
Martin Tenpierik ir. arch.
Because of a necessity for sustainability and thus for a reduction of the amount of primary energy generated with fossil fuels, vacuum insulation panels (VIP) have recently caught the attention of practitioners in the building industry. The reduction of layer thickness may be considered among the most promising features for large-scale application of VIPs in buildings. The high barrier laminate (or casing) with relatively high thermal conductivity envelops the core material, thus introducing a thermal bridge at the panel edges and corners. Especially for barrier laminates containing ,thick' metal foils, the thermal bridge effect needs to be considered thoughtfully. In this contribution analytical models are presented which on the one hand allow rapid estimation of the VIP's overall thermal performance and on the other hand show the influence of material and geometric parameters on this performance. The analytical models are validated through numerical simulations. Rechenmodell zur Vorhersage von Wärmebrückeneffekten an der Hülle aus Hochbarrierefolien von Vakuum-Isolations-Paneelen (VIP). Aufgrund der Notwendigkeit von nachhaltigem Bauen und Energieeinsparung wird zunehmend der Einsatz von Vakuum-Isolations-Paneelen (VIP) zur Wärmedämmung im Bauwesen erwogen, insbesondere ist damit die erhebliche Reduzierung der Wärmedämmschichtdicke möglich. Die Umhüllung aus Hochbarrierefolien erfordert allerdings die Berücksichtigung der Wärmebrückenwirkung. Der vorliegende Beitrag stellt Berechnungsmodelle vor, welche einerseits die schnelle Abschätzung des thermischen Verhaltens von VIP-Elementen ermöglichen und andererseits den Einfluss der Geometrie und Konstruktion der Elemente aufzeigen. Die Berechnungsmodelle wurden anhand von Simulationen validiert. [source]


Controlled Hydrothermal Synthesis and Growth Mechanism of Various Nanostructured Films of Copper and Silver Tellurides

CHEMISTRY - A EUROPEAN JOURNAL, Issue 15 2006
Lizhi Zhang Prof.
Abstract Various nanostructured films of copper and silver tellurides were hydrothermally grown on the corresponding metal substrates through reactions between metal foils and tellurium powder in different media. Interesting morphologies including nanowires, nanorods, nanobelts, nanosheets, and hierarchical dendrites were obtained. The nanostructured films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). A growth mechanism was proposed based on the characterization results. This study provides a low-temperature, solution-phase approach to grow low-dimensional, nanostructured metal tellurides with controllable morphologies. [source]