Metal Exposure (metal + exposure)

Distribution by Scientific Domains

Kinds of Metal Exposure

  • heavy metal exposure


  • Selected Abstracts


    Biofilm formation by algae as a mechanism for surviving on mine tailings

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2005
    J. Viridiana García-Meza
    Abstract Photosynthetic biofilms successfully colonize the sediments of a mine tailings reservoir (Guanajuato, Mexico) despite the high metal concentrations that are present. To elucidate the mechanisms of biofilm survival despite metal ores, experiments were performed to evaluate the response of seminatural biofilms to Cu, Zn, and a combination of both metals at concentrations observed in the field. The biofilms were composed mostly of the chlorophyte Chlorococcum sp. and the cyanobacterium Phormidium sp., and their response to the two added metals was described by measurements of extracellular polymeric substances (EPS) and in vivo fluorescence. The photosynthetic efficiency and the minimal chlorophyll fluorescence of dark-adapted cells were measured by multiwavelength pulse amplitude,modulated fluorometry. The photosynthetic efficiency of light-adapted cells (,PSII) also was measured. Metal exposure increased the EPS production of biofilms, as visualized with confocal laser-scanning microscopy. Extracellular polymeric substances enhanced the extracellular metal accumulation from the first day of metal exposure. Metals provoked changes in the relative abundance of the dominant taxa because of a species-specific response to the metals when added individually. Metals affected the ,psii less than the total biomass, suggesting ongoing activity of the surviving biofilms. Survival of individual biofilm photosynthetic cells was found to resume from the embedding in the mucilaginous structure, which immobilizes the metals extracellularly. The survival of biofilms under mixed-metal exposure has practical applications in the remediation of mine tailings. [source]


    A spot test for detection of cobalt release , early experience and findings

    CONTACT DERMATITIS, Issue 2 2010
    Jacob P. Thyssen
    Background: It is often difficult to establish clinical relevance of metal exposure in cobalt-allergic patients. Dermatologists and patients may incorrectly assume that many metallic items release cobalt at levels that may cause cobalt dermatitis. Cobalt-allergic patients may be unaware that they are exposed to cobalt from handling work items, causing hand dermatitis. Objectives: To present early findings with a newly developed cobalt spot test. Methods and Results: A cobalt spot test based on disodium-1-nitroso-2-naphthol-3,6-disulfonate was able to identify cobalt release at 8.3 ppm. The test may also be used as a gel test if combined with an agar preparation. We found no false-positive reactions when testing metals and alloys known not to contain cobalt. However, one cobalt-containing alloy, which elicited cobalt dermatitis in cobalt-allergic patients, was negative upon cobalt gel testing. Conclusions: The cobalt test detects amounts of cobalt release that approximate the elicitation concentration seen in cobalt-allergic patients. It may serve as a useful tool in dermatology offices and workplaces. [source]


    Quantitative, longitudinal profiling of the primate fecal microbiota reveals idiosyncratic, dynamic communities

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2006
    Joy Wireman
    Summary We used slot blot hybridization, quantitative polymerase chain reaction (qPCR), and flow cytometry microarrays to quantify specific 16S rDNAs in weekly fecal specimens from four monkeys housed in a research vivarium for periods ranging from five to 8 months. Even in these uniformly housed and fed animals the gut microbiota is idiosyncratic, very dynamic on short timescales, and shows significant positive and negative correlations among some bacteria as well as responses to heavy metal exposure. The relative quantification (fmol targets per total fmol bacterial 16S rDNA) afforded by flow cytometry microarrays agreed well with the absolute quantification (nanogram of target DNA per nanogram of fecal DNA) afforded by slot blots and qPCR. We also noted strengths and weaknesses in inter-method comparisons for DNA-based quantification of these complex bacterial communities. [source]


    Trout density and health in a stream with variable water temperatures and trace element concentrations: Does a cold-water source attract trout to increased metal exposure?

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2009
    David D. Harper
    Abstract A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT, USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16°C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16°C) compared to those at an experimental site 10 km downstream (26°C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. [source]


    Contaminated suspended sediments toxic to an Antarctic filter feeder: Aqueous- and particulate-phase effects

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2009
    Nicole A. Hill
    Abstract Disturbances such as dredging, storms, and bioturbation result in the resuspension of sediments. This may affect sessile organisms that live on hard substrates directly above the sediment. Localized sediment contamination exists around many Antarctic research stations, often resulting in elevated contamination loads in marine sediments. To our knowledge, the potential impact of resuspended contaminated sediments on sessile fauna has not been considered, so in the present study, we assessed the sensitivity of Antarctic spirorbid polychaetes to aqueous metals and to metal-contaminated sediments that had been experimentally resuspended. Worms were first exposed to aqueous metals, both singly and in combination, over 10 d. Spirorbid mortality was tolerant to copper (median lethal concentration [LC50], 570 ,g/L), zinc (LC50, >4,910 ,g/L), and lead (LC50, >2,905 ,g/L); however, spirorbid behavior responded to copper concentrations as low as 20,g/L. When in combination, zinc significantly reduced mortality caused by copper. A novel technique was used to resuspend sediments spiked with four concentrations of three metals (up to 450 ,g/g dry wt of copper, 525 ,g/g dry wt of lead, and 2,035 ,g/g dry wt of zinc). The response of spirorbids to unfiltered suspended sediment solutions and filtered solutions (aqueous metal exposure) was measured. Suspended sediments were toxic to filter-feeding spirorbids at concentrations approximating those found in contaminated Antarctica areas. Toxicity resulted both from aqueous metals and from metals associated with the suspended sediments, although suspended clean sediments had no impact. To our knowledge, the present study is the first to show that resuspension of contaminated sediments can be an important pathway for toxicity to Antarctic hard substrate organisms. Based on the present results, current sediment-quality guidelines used in the evaluation of Australian sediments may be applicable to Antarctic ecosystems. [source]


    Dynamics of metal subcellular distribution and its relationship with metal uptake in marine mussels

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2005
    Tania Y-T.
    Abstract We examined the dynamics of subcellular distribution of metals (Cd, Ag, and Zn) in the marine green mussel Perna viridis by partitioning the metals into the insoluble fraction (IF), heat-sensitive proteins (HSP), and metallothionein-like proteins (MTLP) during metal uptake and elimination. Variations in metal uptake and elimination then were correlated with the subcellular distributions of these metals. The IF and HSP were the first ligands to bind with the metals during the dissolved exposure, and more metals were found in the HSP when the metal influx rate was higher. However, to minimize toxicity, metals were redistributed from HSP to MTLP afterwards. The subcellular distribution of metals was dependent of the exposure route in the mussels. During dietary metal exposure, the metals attained equilibrium before they were assimilated and the metal assimilation efficiency was independent of the metal partitioning in different subcellular fractions. During the efflux, metals in the soluble fraction mediated depuration, whereas metals in the insoluble fraction acted as a final storage pool. Redistribution also may occur between the metal-sensitive and inactive pools without significant depuration as a secondary protective mechanism. We further demonstrated that the higher efflux rate of Ag and Cd was related to a higher partitioning in the MTLP and a lower partitioning in the IF. Our study shows that subcellular pools other than MTLP were involved in immediate metal handling in the bivalves. The wide dynamics of subcellular metal distribution suggests that the relevance of individual subcellular fractions is dependent on the exposure pathway. [source]


    Assessing trace-metal exposure to American dippers in mountain streams of southwestern British Columbia, Canada

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2005
    Christy A. Morrissey
    Abstract To develop a suitable biomonitor of metal pollution in watersheds, we examined trends in exposure to nine trace elements in the diet (benthic invertebrates and fish), feathers (n = 104), and feces (n = 14) of an aquatic passerine, the American dipper (Cinclus mexicanus), from the Chilliwack watershed in British Columbia, Canada. We hypothesized that key differences may exist in exposure to metals for resident dippers that occupy the main river year-round and altitudinal migrants that breed on higher elevation tributaries because of differences in prey metal levels between locations or possible differences in diet composition. Metals most commonly detected in dipper feather samples in decreasing order were Zn > Cu > Hg > Se > Pb > Mn > Cd > Al > As. Resident dipper feathers contained significantly higher mean concentrations of mercury (0.64 ,g/g dry wt), cadmium (0.19 ,g/g dry wt), and copper (10.8 ,g/g dry wt) relative to migrants. Mass balance models used to predict daily metal exposure for dippers with different diets and breeding locations within a watershed showed that variation in metal levels primarily was attributed to differences in the proportion offish and invertebrates in the diet of residents and migrants. In comparing predicted metal exposure values to tolerable daily intakes (TDI), we found that most metals were below or within the range of TDI, except selenium, aluminum, and zinc. Other metals, such as cadmium, copper, and arsenic, were only of concern for dippers mainly feeding on insects; mercury was only of concern for dippers consuming high fish diets. The models were useful tools to demonstrate how shifts in diet and breeding location within a single watershed can result in changes in exposure that may be of toxicological significance. [source]


    Biofilm formation by algae as a mechanism for surviving on mine tailings

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2005
    J. Viridiana García-Meza
    Abstract Photosynthetic biofilms successfully colonize the sediments of a mine tailings reservoir (Guanajuato, Mexico) despite the high metal concentrations that are present. To elucidate the mechanisms of biofilm survival despite metal ores, experiments were performed to evaluate the response of seminatural biofilms to Cu, Zn, and a combination of both metals at concentrations observed in the field. The biofilms were composed mostly of the chlorophyte Chlorococcum sp. and the cyanobacterium Phormidium sp., and their response to the two added metals was described by measurements of extracellular polymeric substances (EPS) and in vivo fluorescence. The photosynthetic efficiency and the minimal chlorophyll fluorescence of dark-adapted cells were measured by multiwavelength pulse amplitude,modulated fluorometry. The photosynthetic efficiency of light-adapted cells (,PSII) also was measured. Metal exposure increased the EPS production of biofilms, as visualized with confocal laser-scanning microscopy. Extracellular polymeric substances enhanced the extracellular metal accumulation from the first day of metal exposure. Metals provoked changes in the relative abundance of the dominant taxa because of a species-specific response to the metals when added individually. Metals affected the ,psii less than the total biomass, suggesting ongoing activity of the surviving biofilms. Survival of individual biofilm photosynthetic cells was found to resume from the embedding in the mucilaginous structure, which immobilizes the metals extracellularly. The survival of biofilms under mixed-metal exposure has practical applications in the remediation of mine tailings. [source]


    Linking metal bioaccumulation of aquatic insects to their distribution patterns in a mining-impacted river

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2004
    Daniel J. Cain
    Abstract Although the differential responses of stream taxa to metal exposure have been exploited for bioassessment and monitoring, the mechanisms affecting these responses are not well understood. In this study, the subcellular partitioning of metals in operationally defined metal-sensitive and detoxified fractions were analyzed in five insect taxa. Samples were collected in two separate years along an extensive metal contamination gradient in the Clark Fork River (MT, USA) to determine if interspecific differences in the metal concentrations of metal-sensitive fractions and detoxified fractions were linked to the differences in distributions of taxa relative to the gradient. Most of the Cd, Cu, and Zn body burdens were internalized and potentially biologically active in all taxa, although all taxa appeared to detoxify metals (e.g., metal bound to cytosolic metal-binding proteins). Metal concentrations associated with metal-sensitive fractions were highest in the mayflies Epeorus albertae and Serratella tibialis, which were rare or absent from the most contaminated sites but occurred at less contaminated sites. Relatively low concentrations of Cu were common to the tolerant taxa Hydropsyche spp. and Baetis spp., which were widely distributed and dominant in the most contaminated sections of the river. This suggested that distributions of taxa along the contamination gradient were more closely related to the bioaccumulation of Cu than of other metals. Metal bioaccumulation did not appear to explain the spatial distribution of the caddisfly Arctopsyche grandis, considered to be a bioindicator of metal effects in the river. Thus, in this system the presence/absence of most of these taxa from sites where metal exposure was elevated could be differentiated on the basis of differences in metal bioaccumulation. [source]


    Responses of biofilms to combined nutrient and metal exposure

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2002
    Núria Ivorra
    Abstract Numerous studies have reported marked sensitivities of diatom species to phosphate and organic pollution but have ignored interactions with other common contaminants. The aim of the present study was to investigate the single and joint effects of increased phosphate and metal (cadmium, zinc) concentrations on benthic diatom communities. Microalgal biofilms from a relatively unpolluted stream were exposed in the laboratory to Zn, Cd, and P, separately and in combination, in concentrations found at a polluted stream in the same catchment. The Zn concentration reduced algal growth in biofilms more than the Cd concentration. Phosphate compensated for the single effect of each metal but not for their combined effects. Diatom community changes were evaluated using water quality indices based on the empirical sensitivities of taxa to nutrients (TDI) and organic pollution (%PTV). Phosphate exposure resulted in an increase of the eutrophy rank and presumed pollution-tolerant taxa. In contrast, exposure to Zn, Zn + Cd, and Zn + Cd + P caused a marked reduction of the TDI and %PTV community values. The successional trends in the laboratory matched the observed differences in microphyte communities in the reference and polluted river stations. However, the autoecology of the species present also revealed that the resulting composition of diatom communities cannot be attributed solely to the direct toxic effects of metal and nutrients and their interaction. Observed changes in the relative abundance of species are also determined by their growth form and microdistribution in biofilms. [source]


    Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants

    FEMS MICROBIOLOGY REVIEWS, Issue 4 2005
    David Mendoza-Cózatl
    Abstract Glutathione (,-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by ,-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O -acetylserine/O -acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine ,-synthase and cystathionine ,-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd2+ is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd2+. [source]


    Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007
    D.K. Morales
    Abstract Aims:, To isolate and analyse chromium-resistant micro-organisms suitable for bioremediation. Methods and Results:, Strain CG252, with a minimal inhibitory concentration of 500 ,g ml,1, was isolated from contaminated soils and identified as a Streptomyces sp. by 16S rDNA sequence analysis. Assays carried out at various Cr(VI) concentrations indicated that chromium removal was more efficient at lower concentrations and that this activity resulted in accumulation of Cr(III). Atomic adsorption analysis indicated that the chromium removed was not associated with cell mass and activity assays showed that the capacity to reduce Cr(VI) was most probably due to a soluble cytosolic enzyme. Cells grown as biofilms showed enhanced removal of Cr(VI) with respect to planktonic cells, while analysis of growth and colony morphology indicated that Cr(VI) had a toxic effect on this strain. Conclusions:,Streptomyces sp. CG252 tolerated heavy metals and elevated levels of chromium, despite its negative effect on growth and development, and was efficient at removing Cr(VI) by promoting reduction to Cr(III). Significance and Impact of the Study:, Strain CG252's capacity to tolerate heavy metals and to reduce Cr(VI) to the less toxic Cr(III), especially when forming biofilms, makes it a promising candidate for detoxification of sites containing this heavy metal. [source]


    PRODUCTION OF PHYTOCHELATINS AND GLUTATHIONE BY MARINE PHYTOPLANKTON IN RESPONSE TO METAL STRESS,

    JOURNAL OF PHYCOLOGY, Issue 5 2006
    Silvia K. Kawakami
    Phytoplankton deal with metal toxicity using a variety of biochemical strategies. One of the strategies involves glutathione (GSH) and phytochelatins (PCs), which are metal-binding thiol peptides produced by eukaryotes and these compounds have been related to several intracellular functions, including metal detoxification, homeostasis, metal resistance and protection against oxidative stress. This paper assesses our state of knowledge on the production of PCs and GSH by marine phytoplankton in laboratory and field conditions and the possible applications of PCs for environmental purposes. Good relationships have been observed between metal exposure and PC production in phytoplankton in the laboratory with Cd, Pb, and Zn showing the greatest efficacy, thereby indicating that PCs have a potential for application as a biomarker. Fewer studies on PC distributions in particulate material have been undertaken in the field. These studies show that free Cu has a strong relationship with the levels of PC in the particulate material. The reason for this could be because Cu is a common contaminant in coastal waters. However it could also be due to the lack of measurements of other metals and their speciation. GSH shows a more complex relationship to metal levels both in the laboratory and in the field. This is most likely due to its multifunctionality. However, there is evidence that phytoplankton act as an important source of dissolved GSH in marine waters, which may form part of the strong organic ligands that control metal speciation, and hence metal toxicity. [source]


    Metal toxicity and ectomycorrhizas

    PHYSIOLOGIA PLANTARUM, Issue 2 2000
    G. Jentschke
    Metal toxicity (Al and heavy metals) is a major constraint affecting root growth in a number of natural or managed ecosystems. Fine roots of the majority of plant species are associated with mycorrhizal fungi, which may modify the sensitivity of roots to metal stress. In this review, we summarise the available evidence demonstrating beneficial effects of ectomycorrhizas in alleviation of metal toxicity in forest tree seedlings. We identify experimental shortcomings of past research (e.g. the use of shoot metal concentrations as a measure of metal uptake, use of microanalytical techniques biased by element redistribution) that may confound major conclusions drawn from these experiments. Although there is no doubt that in many cases ectomycorrhizal fungi indeed ameliorate metal stress in their host plants, the mechanism(s) involved remain(s) unclear. The role of metal sorption on fungal tissues thought to reduce metal exposure of the host plant is critically reviewed. As direct evidence (both under artificial and soil conditions) supporting a unique role of fungal immobilisation of metals is lacking so far, there is an urgent need to also test alternative tolerance mechanisms such as the release of metal chelating substances, or nutritional and hormonal effects mediated by mycorrhizal fungi. [source]


    Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure

    PLANT CELL & ENVIRONMENT, Issue 10 2003
    J. BOGS
    ABSTRACT Glutathione and its derivatives play an important role in the tolerance of plants against heavy metals. A glutathione transporter, BjGT1 (AJ561120), was cloned and functionally characterized from Brassica juncea, a plant which may be used for phytoremediation. The full-length BjGT1 cDNA showed homology with the high affinity glutathione transporter HGT1 from Saccharomyces cerevisiae and shares 92% identity with a putative glutathione transporter from A. thaliana (At4g16370). When expressed in the S. cerevisiae hgt1, strain, BjGT1 complemented the mutant on medium with glutathione as the only sulphur source and mediated the uptake of [3H]GSH. Immunoblot analysis with a peptide-specific antiserum directed against a C-terminal sequence revealed high BjGT1 expression in leaf tissue and relatively low expression in stem tissue, whereas BjGT1 protein was not detectable in root tissue. The amounts of BjGT1 mRNA and protein were analysed during a 6 d exposure of B. juncea to 25 µm Cd(NO3)2. BjGT1 mRNA was strongly induced by cadmium in stems and leaves. Unexpectedly, the amount of BjGT1 protein in leaves showed a pronounced decrease with a minimum after 96 h of Cd exposure, followed by partial recovery. The strong regulation of BjGT1 by cadmium suggests a role of this glutathione transporter during heavy metal exposure. [source]


    Urinary metal and polycyclic aromatic hydrocarbon biomarkers in boilermakers exposed to metal fume and residual oil fly ash

    AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 6 2005
    Sutapa Mukherjee MBBS
    Abstract Background Boilermakers are occupationally exposed to known carcinogens. Methods The association of urinary 1-hydroxy-pyrene (1-OHP), a biomarker of polycyclic aromatic hydrocarbon (PAH) exposure, with biomarkers of metal exposure (vanadium, chromium, manganese, nickel, copper, and lead) in boilermakers exposed to metal fume from welding and dust particulates from residual oil fly ash (ROFA) was examined. A repeated measures cohort study was conducted during the overhaul of an oil-fired boiler. Twice-daily urine samples were obtained for 5 days and analyzed for cotinine, 1-OHP, and metals. Generalized estimating equations (GEE) were used to model the multivariate relationship of 1-OHP to the explanatory variables. Results Metal and 1-OHP levels were determined for 165 urine samples from 20 boilermakers and these levels increased during the workweek. However, the 1-OHP level was not significantly associated with any individual metal level at any time point. Conclusion This suggests that boilermakers were occupationally exposed to PAH and metals, but 1-OHP as a PAH biomarker was unable to serve as a surrogate marker of metal exposure for the metals measured in this study. Am. J. Ind. Med. 47:484,493, 2005. © 2005 Wiley-Liss, Inc. [source]


    Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2006
    Véronique Marie
    Abstract Quantitative real-time polymerase chain reaction (PCR) was used to compare for the first time the differential expression of metallothionein (MT) isoform genes, together with biosynthesis of the total MT proteins, in the gills of triploid and diploid juvenile Pacific oyster Crassostrea gigas in response to cadmium (Cd) and zinc (Zn) exposure. Oysters were exposed to Cd (0.133 ,M), Zn (15.3 ,M), and Cd+Zn for 14 d. Results showed similar response capacities to metal exposures in the two populations. No significant difference was revealed in terms of MT gene expression, MT protein synthesis, and Cd accumulation. However, triploid oysters bioaccumulated Zn 30% less efficiently than diploid oysters. Among the three MT isoform genes, CgMT2 appeared to be more expressed than CgMT1, whereas CgMT3 appeared to be anecdotal (106 times lower than CgMT2). CgMT2 and CgMT1 gene expression levels were increased sevenfold in the presence of Cd, whereas Zn appeared to have no effect. A twofold increase in MT protein levels occurred in response to Cd exposure. Discrepancies between mRNA and protein levels suggest that in C. gigas MT are regulated at the transcriptional level, as well as at the translational level. [source]


    Chromium (VI) inhibits heme oxygenase-1 expression in vivo and in arsenic-exposed human airway epithelial cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
    Kimberley A. O'Hara
    Inhaled hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms. One hypothesis for this lung pathogenesis is that Cr(VI) silences induction of cytoprotective genes, such as heme oxygenase-1 (HO-1), whose total lung mRNA levels were reduced 21 days after nasal instillation of potassium dichromate in C57BL/6 mice. To investigate the mechanisms for this inhibition, Cr(VI) effects on basal and arsenic (As(III))-induced HO-1 expression were examined in cultured human bronchial epithelial (BEAS-2B) cells. An effect of Cr(VI) on the low basal HO-1 mRNA and protein levels in BEAS-2B cells was not detectible. In contrast, Cr(VI) added to the cells before As(III), but not simultaneously with As(III), attenuated As(III)-induced HO-1 expression. Transient transfection with luciferase reporter gene constructs controlled by the full length ho-1 promoter or deletion mutants demonstrated that this inhibition occurred in the E1 enhancer region containing critical antioxidant response elements (ARE). Cr(VI) pretreatment inhibited As(III)-induced activity of a transiently expressed reporter construct regulated by three ARE tandem repeats. The mechanism for this Cr(VI)-attenuated transactivation appeared to be Cr(VI) reduction of the nuclear levels of the transcription factor Nrf2 and As(III)-stimulated Nrf2 transcriptional complex binding to the ARE cis element. Finally, exposing cells to Cr(VI) prior to co-exposure with As(III) synergized for apoptosis and loss of membrane integrity. These data suggest that Cr(VI) silences induction of ARE-driven genes required for protection from secondary insults. The data also have important implications for understanding the toxic mechanisms of low level, mixed metal exposures in the lung. J. Cell. Physiol. 209: 113,121, 2006. © 2006 Wiley-Liss, Inc. [source]


    Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2006
    Marjo H. Tuomainen
    Abstract Thlaspi caerulescens is increasingly acknowledged as one of the best models for studying metal hyperaccumulation in plants. In order to study the mechanisms underlying metal hyperaccumulation, we used proteomic profiling to identify differences in protein intensities among three T.,caerulescens accessions with pronounced differences in tolerance, uptake and root to shoot translocation of Zn and Cd. Proteins were separated using two-dimensional electrophoresis and stained with SYPRO Orange. Intensity values and quality scores were obtained for each spot by using PDQuest software. Principal component analysis was used to test the separation of the protein profiles of the three plant accessions at various metal exposures, and to detect groups of proteins responsible for the differences. Spot sets representing individual proteins were analysed with the analysis of variance and non-parametric Kruskal-Wallis test. Clearest differences were seen among the Thlaspi accessions, while the effects of metal exposures were less pronounced. The 48,tentatively identified spots represent core metabolic functions (e.g. photosynthesis, nitrogen assimilation, carbohydrate metabolism) as well as putative signalling and regulatory functions. The possible roles of some of the proteins in heavy metal accumulation and tolerance are discussed. [source]


    Effects of zinc and cadmium on erythrocyte antioxidant systems of a freshwater fish Oreochromis niloticus

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2010
    Özgür F
    Abstract In this work to determine the effects of metals exposure of Oreochromis niloticus on erythrocyte antioxidant systems, fish were exposed to 5.0 mg/L Zn, 1.0 mg/L Cd, and 5.0 mg/L Zn + 1.0 mg/L Cd mixtures for 7 and 14 days and reduced glutathione (GSH) level, catalase (CAT), and glucose-6-phosphate dehydrogenase (G6PD) activities were investigated. In addition, Zn or Cd levels in whole blood were studied. Erythrocyte GSH level and CAT and G6PD enzyme activities increased in response to single and combined Zn and Cd exposure. The elevation observed in the CAT activity was higher in the Cd alone, and in combination with Zn, than in Zn alone. Time-dependent alteration was not observed in all antioxidant parameters. Exposure to metals (alone and in mixture) resulted in elevatation of Zn and Cd levels in the blood. Concentration of metals in the blood of fish exposed to the Zn + Cd combination was lower than in fish exposed to the single metal. This study demonstrates that metals caused oxidative stress in fish erythrocytes, and an adaptation with an increase in CAT and G6PD activities and GSH level, which were important in the protection against metal damage, was observed. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:223,229, 2010; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20327 [source]