Home About us Contact | |||
Metal Components (metal + component)
Selected AbstractsSynthesis of New Visible Light Active Photocatalysts of Ba(In1/3Pb1/3M,1/3)O3 (M,: Nb, Ta): A Band Gap Engineering Strategy Based on Electronegativity of a Metal Component.CHEMINFORM, Issue 46 2005Su Gil Hur Abstract For Abstract see ChemInform Abstract in Full Text. [source] Metal Objects Mapping After Small Charge Explosions.JOURNAL OF FORENSIC SCIENCES, Issue 3 2006A Study on AISI 304Cu Steel with Two Different Grain Sizes ABSTRACT: Evidence of exposure of a metal component to a small charge explosion can be detected by observing microstructural modifications; they may be present even if the piece does not show noticeable overall plastic deformations. Particularly, if an austenitic stainless steel (or another metal having a face-centered cubic structure and a low stacking fault energy) is exposed to an explosive shock wave, high-speed deformation induces primarily mechanical twinning, whereas, in nonexplosive events, a lower velocity plastic deformation first induces slip. The occurrence of mechanical twins can be detected even if the surface is damaged or oxidized in successive events. In the present research, optical metallography (OM) and scanning electron microscopy (SEM), and scanning tunneling microscopy (STM) were used to detect microstructural modifications caused on AISI 304Cu steel disks by small-charge explosions. Spherical charges of 54.5 or 109 g TNT equivalent mass were used at explosive-to-target distances from 6.5 to 81.5 cm, achieving peak pressures from 160 to 0.5 MPa. Explosions induced limited or no macro-deformation. Two alloy grain sizes were tested. Surface OM and SEM evidenced partial surface melting, zones with recrystallization phenomena, and intense mechanical twinning, which was also detected by STM and X-ray diffraction. In the samples' interior, only twins were seen, up to some distance from the explosion impinged surface and again, at the shortest charge-to-sample distances, in a thin layer around the reflecting surface. For forensic science locating purposes after explosions, the maximum charge-to-target distance at which the phenomena disappear was singled out for each charge or grain size and related to the critical resolved shear stress for twinning. [source] Improvement in the fatigue strength of chromium electroplated AISI 4340 steel by shot peeningFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 2 2009H. J. C. VOORWALD ABSTRACT In landing gear, an important mechanical component for high responsible applications, wear and corrosion control is currently accomplished by chrome plating or hard anodising. However, some problems are associated with these operations. Experimental results have also shown that chrome-plated specimens have fatigue strength lower than those of uncoated parts, attributed to high residual tensile stress and microcracks density contained into the coating. Under fatigue conditions these microcracks propagate and will cross the interface coating-substrate and penetrate base metal without impediment. Shot peening is a surface process used to improve fatigue strength of metal components due to compressive residual stresses induced in the surface layers of the material, making the nucleation and propagation of fatigue cracks difficult. This investigation is concerned with analysis of the shot peening influence on the rotating bending fatigue strength of hard chromium electroplated AISI 4340 steel. Specimens were submitted to shot peening treatment with steel and ceramic shots and, in both cases, experimental results show increase in the fatigue life of AISI 4340 steel hard chromium electroplated, up to level of base metal without chromium. Peening using ceramic shot resulted in lower scatter in rotating bending fatigue data than steel shots. [source] Proposed life prediction model for laser-formed high-strength low-alloy curved componentsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 4 2007P. J. McGRATH ABSTRACT Techniques employed for material processing using laser technology are progressing at a rapid pace. One such technique is that of forming sheet metal plates. This high-intensity localized heating process allows for forming of metallic sheet materials without the need for expensive tools and dies or any mechanical assistance. The fundamental mechanisms related to this process are reasonably well understood and documented but there remain areas that require further research and development. One such area is the fatigue behaviour of sheet materials manufactured by this novel process. Hence, the proceeds of this paper deal with fatigue life prediction of sheet metal components laser-formed to a radius with a curvature of approximately 120 mm. The approach to this proposed model considers the mean stress relationship as given by Gerber and a prediction model derived from combining the aspects of life prediction models according to Collins and Juvinall & Marshek. [source] Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: A comparative study with the pure metals and stainless steelINTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 3 2010Klara Midander Abstract The European product safety legislation, REACH, requires that companies that manufacture, import, or use chemicals demonstrate safe use and high level of protection of their products placed on the market from a human health and environmental perspective. This process involves detailed assessment of potential hazards for various toxicity endpoints induced by the use of chemicals with a minimum use of animal testing. Such an assessment requires thorough understanding of relevant exposure scenarios including material characteristics and intrinsic properties and how, for instance, physical and chemical properties change from the manufacturing phase, throughout use, to final disposal. Temporary or permanent adverse health effects induced by particles depend either on their shape or physical characteristics, and/or on chemical interactions with the particle surface upon human exposure. Potential adverse effects caused by the exposure of metal particles through the gastrointestinal system, the pulmonary system, or the skin, and their subsequent potential for particle dissolution and metal release in contact with biological media, show significant gaps of knowledge. In vitro bioaccessibility testing at conditions of relevance for different exposure scenarios, combined with the generation of a detailed understanding of intrinsic material properties and surface characteristics, are in this context a useful approach to address aspects of relevance for accurate risk and hazard assessment of chemicals, including metals and alloys and to avoid the use of in vivo testing. Alloys are essential engineering materials in all kinds of applications in society, but their potential adverse effects on human health and the environment are very seldom assessed. Alloys are treated in REACH as mixtures of their constituent elements, an approach highly inappropriate because intrinsic properties of alloys generally are totally different compared with their pure metal components. A large research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents. Integr Environ Assess Manag 2010;6:441,455. © 2009 SETAC [source] The ZiReal Post: A New Ceramic Implant AbutmentJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 1 2003URS BRODBECK DMD ABSTRACT Restorations in the anterior esthetic zone present significant challenges in both the surgical and prosthetic phases of implant dentistry. Titanium has been established as the material of choice for endosseous implants, resulting in a high degree of predictability. Many types of implants require transmucosal abutments to retain implant restorations. Ceramics may be the ideal material to replace natural teeth, but most transmucosal abutments are made of titanium. However, ceramics may also be used as abutments in implant restorations. This combination of ceramics for abutment and crown provides better translucency for the implant restoration than is available with metal abutments and porcelain-fused-to-metal crowns. Ceramic abutments and implant restorations also minimize the gray color associated with metal components that is transmitted through the peri-implant tissues. Customized emergence profiles also may be obtained with ceramic abutments; this generally improves the predictability and consistency of the esthetics obtainable in implant restorations. Zirconia as a ceramic material offers not only outstanding material properties but also a well-documented biocompatibility. CLINICAL SIGNIFICANCE This article discusses the clinical and laboratory features of a new ceramic abutment, ZiRealÔ Post (Implant Innovations, Inc., Palm Beach Gardens, Florida). [source] Adopting Lead-Free Electronics: Policy Differences and Knowledge GapsJOURNAL OF INDUSTRIAL ECOLOGY, Issue 4 2004Julie M. Schoenung For more than a decade, the use of lead (Pb) in electronics has been controversial: Indeed, its toxic effects are well documented, whereas relatively little is known about proposed alternative materials. As the quantity of electronic and electrical waste (e-waste) increases, legislative initiatives and corporate marketing strategies are driving a reduction in the use of some toxic substances in electronics. This article argues that the primacy of legislation over engineering and economics may result in selecting undesirable replacement materials for Pb because of overlooked knowledge gaps. These gaps include the need for: assessments of the effects of changes in policy on the flow of e-waste across state and national boundaries; further reliability testing of alternative solder alloys; further toxicology and environmental impact studies for high environmental loading of the alternative solders (and their metal components); improved risk assessment methodologies that can capture complexities such as changes in waste management practices, in electronic product design, and in rate of product obsolescence; carefully executed allocation methods when evaluating the impact of raw material extraction; and in-depth risk assessment of alternative end-of-life (EOL) options. The resulting environmental and human health consequences may be exacerbated by policy differences across political boundaries. To address this conundrum, legislation and policies dealing with Pb in electronics are first reviewed. A discussion of the current state of knowledge on alternative solder materials relative to product design, environmental performance, and risk assessment follows. Previous studies are reviewed, and consistent with their results, this analysis finds that there is great uncertainty in the trade-offs between Pb-based solders and proposed replacements. Bridging policy and knowledge gaps will require increased international cooperation on materials use, product market coverage, and e-waste EOL management. [source] AFM and SNOM characterization of ordinary chondrites: A contribution to solving the problem of asteroid reddeningPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 8 2010Giuliano Pompeo Abstract Space weathering (SW) is an ensemble of processes that act on a body exposed to the space environment. Typically, the exposure to SW results in the accumulation, at the surface, of nanoparticles, that are thought to be produced through a vaporization and subsequent cooling of the metallo-silicaceous components exposed to the space environment. The presence of such nanoparticles is responsible for the so-called reddening of the asteroids' reflectance spectra (i.e., the increase in Vis,NIR reflectance with increase in wavelength) observed by remote-sensing measurements. To investigate the mechanism of formation of these nanoparticles, we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) to morphologically and optically characterize ordinary chondrites (OC), the most abundant class of meteorites collected on Earth and whose parent bodies are the S-type asteroids. The AFM study reveals the occurrence of a diffuse nanophase (martensite) in the meteorite's metal inclusions. Since the same areas show a reddening of the reflectivity spectra, this suggests that such spectral modification is based on a shock-induced phase transformation of the metal components of the extraterrestrial body. To gain more insight into this nanophase and on its role in the SW of the asteroids, an optical characterization by SNOM has been performed on OCs. In this work we exploited the peculiarity of this technique to search for a correlation between the topography on the nanoscale and the spectral characteristics, at different wavelengths in the red-NIR range, of the observed nanophase. Indeed, a high-resolution mapping of the optical properties of the meteorite provides an interesting method to discriminate between martensite-based and Fe-silicaceous nanoparticles. [source] |