Home About us Contact | |||
Metal Centre (metal + centre)
Kinds of Metal Centre Selected AbstractsThree-Component Entanglements Consisting of Three Crescent-Shaped Bidentate Ligands Coordinated to an Octahedral Metal CentreCHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2007Fabien Durola Abstract 3,3,-Biisoquinoline ligands (biiq) L, bearing aromatic substituents on their 8 and 8, positions, have been used to generate interwoven systems consisting of three crescent-shaped ligands disposed around an octahedral metal centre. Mono-ligand complexes of the type [ReL(CO)3py]+ (py: pyridine) have also been prepared, leading to sterically non-hindering complexes in spite of the endotopic nature of the chelate used. The three-component entanglements have been prepared by using either FeII or RuII as gathering metal centre. The synthetic procedure is simple and efficient, affording fully characterised complexes as their PF6 or SbCl6 salts. X-ray crystallography clearly shows that the crescent-shaped ligands do not repel each other in the tris-chelate complexes. In an analogous way, the ReI complexes show open structures with no steric repulsion between the L ligand and the ancillary CO or py groups. The FeL3 or RuL3 compounds are very unusual in the sense that, contrary to all the other tris-bidentate chelate complexes made till now, the three organic components are tangled up, in a situation which will be very favourable to the formation of new non trivial topologies of the catenane type. [source] Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural watersENVIRONMENTAL MICROBIOLOGY, Issue 2 2007Haewon Park Summary A recent report of a novel carbonic anhydrase (CDCA1) with Cd as its metal centre in the coastal diatom Thalassiosira weissflogii has led us to search for the occurrence of this Cd enzyme (CDCA) in other marine phytoplankton and in the environment. Using degenerate primers designed from the published sequences from T. weissflogii and a putative sequence in the genome of Thalassiosira pseudonana, we show that CDCA is widespread in diatom species and ubiquitous in the environment. All detected genes share more than 64% amino acid identity with the CDCA of T. pseudonana. Analysis of the amino acid sequence of CDCA shows that the putative Cd binding site resembles that of beta-class carbonic anhydrases (CAs). The prevalence of CAs in diatoms that presumably contain Cd at their active site probably reflects the very low concentration of Zn in the marine environment and the difficulty in acquiring inorganic carbon for photosynthesis. The cdca primers developed in this study should be useful for detecting cdca genes in the field, and studying the conditions under which they are expressed. [source] New Approaches to 12-Coordination: Structural Consequences of Steric Stress, Lanthanoid Contraction and Hydrogen BondingEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2010Anthony S. R. Chesman Abstract The anionic dinitrile ligand dicyanonitrosomethanide (dcnm), C(CN)2(NO),, and the anion resulting from its addition product with water, carbamoylcyanonitrosomethanide (ccnm), C(CN)(CONH2)(NO),, have been incorporated into lanthanoid complexes and display unusual ,2(N,O) nitroso coordination modes. (Et4N)3[Ln(ccnm)6] (1Ln; 1Ln = 1La, 1Ce, 1Pr, 1Nd, 1Sm) and (Me4N)3[Ln(ccnm)6] (2Ln; 2Ln = 2La, 2Ce, 2Pr, 2Nd) are systems containing 12-coordinate homoleptic trianionic lanthanoidate complexes. The nitroso groups of the ccnm ligands form three-membered ring chelates with the lanthanoid metal centre, with the asymmetry of the nitroso ,2 interactions dependent upon the intramolecular N,H···O=N hydrogen bonding. Additional intermolecular hydrogen bonding interactions exist between adjacent amide and nitrile groups giving rise to 3D ,-Po and 6,8-connected (412.63)(420.68) networks in 1Ln and 2Ln, respectively. The compounds (Me4N)3[Ln(dcnm)6] (3Ln; 3Ln = 3La, 3Ce, 3Nd, 3Sm) also contain a 12-coordinate trianionic lanthanoidate complex with the nitroso group exhibiting a highly symmetrical ,2 interaction. The sterically crowded environments of [Ln(18-crown-6)(dcnm)3] (4Ln; 4Ln = 4La, 4Ce, 4Pr, 4Nd) result in a shift towards a more asymmetric ,2 bonding of the nitroso group with decrease in the Ln3+ radius. There is a corresponding increase of the Ln,O,N angle, and one ligand is ,1(O) binding in 4Nd. The dcnm ligands in the discrete complexes [La(phen)3(dcnm)(3,x)Clx], x , 0.25 (5) (phen = 1,10-phenanthroline), (Et4N)[Ce(phen)2(dcnm)4] (6a/b, 6c) and [Ce(phen)2(dcnm)Cl2H2O] (7) display a variety of coordination modes. Complex 5 has 1D chains formed by ,,, stacking of adjacent phen co-ligands. Complexes 6 contain the monoanionic complex [Ce(phen)2(dcnm)4], with two geometric isomers present in the crystal structure of 6a/b. Complex 7 forms extended 1D chains via hydrogen bonding between coordinated water and chloride atoms and an extensive array of face-to-face , interactions. [source] Synthesis and Characterisation of (Alkoxybenzimidazolin-2-ylidene)palladium Complexes: The Effect of Ancillary Ligands on the Behaviour of PrecatalystsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2009Murray V. Baker Abstract A series of new N-heterocyclic carbene (NHC),palladium(II) complexes bearing electron-rich benzimidazolin-2-ylidene ligands are described and structurally and spectroscopically characterised. These (benzimidazolin-2-ylidene)palladium complexes bear butoxy groups to increase the solubility and perhaps influence the catalytic activity by increasing the electron density around the metal centre. The effect of varying the ancillary ligands is investigated, although these ligands do not appear to significantly alter the activity of the complexes as precatalysts. Preliminary studies indicate the complexes act as precatalysts with moderate activity in the Mizoroki,Heck and Suzuki,Miyaura coupling reactions. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Synthesis, Protonation and CuII Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition StudiesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 1 2009Andrés G. Algarra Abstract The synthesis and coordination chemistry of two novel ligands, 2,6,9,12,16-pentaaza[17]metacyclophane (L1) and 2,6,9,12,16-pentaaza[17]paracyclophane (L2), is described. Potentiometric studies indicate that L1 and L2 form a variety of mononuclear complexes the stability constants of which reveal a change in the denticity of the ligand when moving from L1 to L2, a behaviour that can be qualitatively explained by the inability of the paracyclophanes to simultaneously use both benzylic nitrogen atoms for coordination to a single metal centre. In contrast, the formation of dinuclear hydroxylated complexes is more favoured for the paraL2 ligand. DFT calculations have been carried out to compare the geometries and relative energies of isomeric forms of the [CuL]2+ complexes of L1 and L2 in which the cyclophane acts either as tri- or tetradentate. The results indicate that the energy cost associated with a change in the coordination mode of the cyclophane from tri- to tetradentate is moderate for both ligands so that the actual coordination mode can be determined not only by the characteristics of the first coordination sphere but also by the specific interactions with additional nearby water molecules. The kinetics of the acid promoted decomposition of the mono- and dinuclear CuII complexes of both cyclophanes have also been studied. For both ligands, dinuclear complexes convert rapidly to mononuclear species upon addition of excess acid, the release of the first metal ion occurring within the mixing time of the stopped-flow instrument. Decomposition of the mononuclear [CuL2]2+ and [CuHL2]3+ species occurs with the same kinetics, thus showing that protonation of [CuL2]2+ occurs at an uncoordinated amine group. In contrast, the [CuL1]2+ and [CuHL1]3+ species show different decomposition kinetics indicating the existence of significant structural reorganisation upon protonation of the [CuL1]2+ species. The interaction of AMP with the protonated forms of the cyclophanes and the formation of mixed complexes in the systems Cu,L1 -AMP, Cu,L2 -AMP, and Cu,L3 -AMP, where L3 is the related pyridinophane containing the same polyamine chain and 2,6-dimethylpyridine as a spacer, is also reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Control of Intramolecular Ether-Oxygen Coordination in the Crystal Structure of Copper(II) Complexes With Dipicolylamine-Based LigandsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2007Yuji Mikata Abstract Thirteen crystal structures of copper(II) complexes with a series of dipicolylamine (DPA)-derived ligands, N -(2-methoxyethyl)- N,N -bis(2-pyridylmethyl)amine (L1), N -[2-(2-hydroxyethyloxy)ethyl]- N,N -bis(2-pyridylmethyl)amine (L2) and N -(3-methoxypropyl)- N,N -bis(2-pyridylmethyl)amine (L3), have been determined and the factors that control the coordination of the ether-oxygen atom of these ligands to the copper centre are discussed. Complexes that have +1 or +2 charges exhibit coordination of the ether-oxygen atom, whereas neutral complexes in which two anions are bound to the copper(II) centre tend to lose the oxygen coordination. Upon chelation of the oxygen atom, L3 forms a six-membered chelate ring with respect to the 3-aminopropyl ether moiety whereas L1 and L2 form a five-membered chelate. This difference, especially in the nitrate and bromide complexes, determines whether the ether-oxygen atom chelates to the metal centre to give a monocationic complex, or the second anion coordinates to the metal centre to form the ether-free, neutral complex. The terminal anchor hydroxy group of L2 facilitates the ether-oxygen coordination via a hydrogen bond interaction to the donor atom located trans to the aliphatic nitrogen atom in the basal plane. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] The Reaction of (Bipyridyl)palladium(II) Complexes with Thiourea , Influence of DNA and Other Polyanions on the Rate of ReactionEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2005Matteo Cusumano Abstract [Pd(bipy)(py)2](PF6)2 reacts stepwise with excess thiourea to give [Pd(tu)4](PF6)2. The kinetics of the second step, which refers to the replacement of bipyridyl in [Pd(bipy)(tu)2](PF6)2, have been studied in water and in the presence of calf thymus DNA, sodium polyriboadenylate, sodium polyvinylsulfonate or sodium polymetaphosphate at 25 °C and pH = 7 and a fixed sodium chloride concentration. The reaction follows a first order course and a plot of kobs against [thiourea]2 affords a straight line with a small intercept. DNA inhibits the process without altering the rate law. The kobs values decrease systematically on increasing the DNA concentration eventually tending to a limiting value. The values are larger at higher ionic strengths and the other polyanions show similar behaviour. The influence of DNA on the kinetics can be related to steric inhibition caused by noncovalent binding with the complex. Upon interaction with DNA, [Pd(bipy)(tu)2]2+ gives rise to immediate spectroscopic changes in the UV/Vis region as well as induced circular dichroism suggesting that the complex, like similar platinum(II) and palladium(II) species of bipyridyl, intercalates with the double helix. Such a type of interaction hampers the attack of the nucleophile at the metal centre inhibiting the reaction. The decrease in the rate of ligand substitution upon decreasing salt concentration but at a given DNA concentration is due to the influence of ionic strength on the complex,DNA interaction. The reactivity inhibition by single-stranded poly(A), polyvinylsulfonate or polymetaphosphate can be accounted for in terms of self-aggregation of the complex induced by the polyanion. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Reaction of Mercury(0) with the I2 Adduct of Tetraphenyldithioimidodiphosphinic Acid (SPPh2)2NH (HL) , Crystal Structures of [Hg(HL)I2] and HgL2EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2004M. Carla Aragoni Abstract The complex [Hg(HL)I2] (1) has been synthesised by reacting liquid Hg(0) in Et2O under mild reaction conditions with the I2 adduct of HL, HL·I2, while HgL2 (2) has been obtained from the reaction of compound 1 with HL in CH3CN. A single-crystal X-ray investigation of 1 shows four independent molecules in the asymmetric unit, each of which contains an HgII ion coordinated to two iodine atoms and two sulfur atoms of one bidentate neutral ligand in a distorted tetrahedral coordination geometry. Compound 2 consists of two anionic ligands coordinated to an HgII ion, which again displays a distorted tetrahedral coordination sphere. The reaction of 2 with HI (55 wt.-% in water) affords [Hg(HL)2](I)2 (3). Compounds 1, 2, and 3 have been characterised by FT-IR and 31P NMR spectroscopy. Density functional calculations suggest that compound 3 should feature a distorted tetrahedral coordination around the metal centre, with unequal Hg,S bond lengths. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Synthesis and Dynamic Features of (Chloro)zirconocene Cations Stabilised by Pendant (Diarylphosphanyl)alkyl and (Dimethylamino)alkyl Substituents at Their Cyclopentadienyl Ring SystemsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2003Steve Döring Abstract Treatment of the substituted (diarylphosphanyl)methyl group-4 metallocene complexes [(C5H4,CR1R2,PAr2)2ZrCl2] (2: R1/R2 = CH3/CH3, H/CH3, H/aryl) with Li[B(C6F5)4] in dichloromethane solution results in chloride ligand abstraction (with LiCl precipitation) to yield the complexes [(C5H4,CR1R2,PAr2)2Zr,Cl+] (5), with both phosphanyl groups internally coordinated to the metal centre. Three possible diastereoisomers are observed in the case of 5c (R1 = H; R2 = CH3), while bulkier R2 substituents give higher selectivities. The thermally induced (reversible) cleavage of the Zr,phosphane linkage results in dynamic NMR behaviour. Gibbs activation energies of ,G,(298 K) = 14.8 ± 0.5 and 14.5 ± 0.5 kcal/mol were obtained for these intramolecular equilibration processes in the complexes trans - 5d (R1 = H; R2 = Ph) and trans - 5e (R1 = H; R2 = ferrocenyl), respectively. Treatment of the substituted (dimethylamino)methyl metallocene complexes [(C5H4,CR1R2,NMe2)2ZrCl2] (6a, 6b) with Li[B(C6F5)4] proceeds analogously to yield the cation systems [{C5H4,C(CH3)2,NMe2}2ZrCl+] (12a) and [{C5H4,CH(CH3),NMe2}2ZrCl+] (12b, three possible diastereoisomers). Both complexes have their pairs of amino groups coordinated to the metal centre. The complexes exhibit dynamic NMR spectra. Selective equilibration of the diastereotopic N(CH3)A(CH3)B resonances of complex 12a is observed [,G,(233 K) = 11.5 ± 0.2 kcal/mol], whereas the adjacent C(CH3)A(CH3)B methyl groups remain diastereotopic. The dynamic equilibration of the latter was observed at a markedly higher temperature [,G,(333 K) = 17.3 ± 0.2 kcal/mol]. Treatment of [{C5H4,C(CH3)2,NMe2}CpZrCl2] (10) with Li[B(C6F5)4] resulted in the formation of complex [{C5H4,C(CH3)2,NMe2}CpZr,Cl+] (11), which shows the internal ,N(CH3)A(CH)B equilibration proceeding with a markedly higher activation barrier [,G,(333 K) = 17.6 ± 0.2 kcal/mol] than in 12a, and a stereochemical memory effect indicative of solvent coordination to the metal centre of the resulting highly electrophilic chlorozirconocene cation intermediate. Complex 11 was characterised by an X-ray crystal structure analysis, which shows the internal Zr,amine coordination. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxideFEBS JOURNAL, Issue 5 2000Evidence for a dithiol, disulfide equilibrium, implications for redox regulation Calcineurin (CaN) is a Ca2+ -and calmodulin (CaM)-dependent serine/threonine phosphatase containing a dinuclear Fe,Zn center in the active site. Recent studies have indicated that CaN is a possible candidate for redox regulation. The inactivation of bovine brain CaN and of the catalytic CaN A-subunit from Dictyostelium by the vicinal dithiol reagents phenylarsine oxide (PAO) and melarsen oxide (MEL) and by H2O2 was investigated. PAO and MEL inhibited CaN with an IC50 of 3,8 µm and the inactivation was reversed by 2,3-dimercapto-1-propane sulfonic acid. The treatment of isolated CaN with hydrogen peroxide resulted in a concentration-dependent inactivation. Analysis of the free thiol content performed on the H2O2 inactivated enzyme demonstrated that only two or three of the 14 Cys residues in CaN are modified. The inactivation of CaN by H2O2 could be reversed with 1,4-dithiothreitol and with the dithiol oxidoreductase thioredoxin. We propose that a bridging of two closely spaced Cys residues in the catalytic CaN A-subunit by PAO/MEL or the oxidative formation of a disulfide bridge by H2O2 involving the same Cys residues causes the inactivation. Our data implicate a possible involvement of thioredoxin in the redox control of CaN activity under physiological conditions. The low temperature EPR spectrum of the native enzyme was consistent with a Fe3+,Zn2+ dinuclear centre. Upon H2O2 -mediated inactivation of the enzyme no significant changes in the EPR spectrum were observed ruling out that Fe2+ is present in the active enzyme and that the dinuclear metal centre is the target for the oxidative inactivation of CaN. [source] Zirconocene-catalysed propene polymerisation: kinetics, mechanism, and the role of the anionMACROMOLECULAR SYMPOSIA, Issue 1 2004Fuquan Song Abstract The olefin polymerisation activity of metallocene catalysts strongly depends on the counteranion provided by the activator system. The relative activities of a number of new diborate anions [Z(BAr3)2], have been quantified (Z = CN, NH2, N(CN)2; Ar = C6F5 or o -C6F4C6F5). The kinetic parameters for the initiation, propagation and termination steps of propene polymerisations catalysed by (SBI)ZrCl2 have been determined using quenched-flow kinetic and batch techniques [SBI = rac -Me2Si(1-Ind)2]. Comparison of two activator systems, (i) CPh3[B(C6F5)4] / triisobutylaluminium (TIBA) and (ii) methylaluminoxane (MAO) shows, surprisingly, that the concentration of species actively involved in chain growth at any one time is comparable for both systems, although the MAO-activated catalyst is about 20 times less active than the borate system. It is concluded that the counteranion remains sufficiently strongly bound to the metal centre throughout the chain growth sequence to modulate the energetics of monomer insertion. A model suggesting that the monomer binding follows an associative interchange (Ia) mechanism is proposed. [source] Bis(,-benzene-1,2-dicarboxylato)bis{aqua[2-(2-chloro-6-fluorophenyl)-1H -imidazo[4,5- f][1,10]phenanthroline]cadmium(II)} and its zinc(II) analogueACTA CRYSTALLOGRAPHICA SECTION C, Issue 12 2009Xiu-Yan Wang In the isomorphous title compounds, [Cd2(C8H4O4)2(C19H10ClFN4)2(H2O)2] and [Zn2(C8H4O4)2(C19H10ClFN4)2(H2O)2], the CdII centre is seven-coordinated by two N atoms from one [2-(2-chloro-6-fluorophenyl)-1H -imidazo[4,5- f][1,10]phenanthroline (L) ligand, one water O atom and four carboxylate O atoms from two different benzene-1,2-dicarboxylate (1,2-bdc) ligands in a distorted pentagonal,bipyramidal coordination, while the ZnII centre is six-coordinated by two N atoms from one L ligand, one water O atom and three carboxylate O atoms from two different 1,2-bdc ligands in a distorted octahedral coordination. Each pair of adjacent metal centres is bridged by two 1,2-bdc ligands to form a dimeric structure. In the dimer, each L ligand coordinates one metal centre. The dimer is centrosymmetric, with a crystallographic inversion centre midway between the two metal centres. The aromatic interactions lead the dimers to form a two-dimensional supramolecular architecture. Finally, O,H...O and N,H...O hydrogen bonds reinforce the two-dimensional structures of the two compounds. [source] A new polymorph of poly[bis(,2 -perchlorato-,2O:O,)(2,2,:6,,2,,-terpyridine-,3N,N,,N,,)lead(II)] with a greatly extended chain repeat distanceACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2009Alexander J. Blake In the title compound, [Pb(ClO4)2(C15H11N3)]n, two molecules occupy general positions while the third lies on a crystallographic twofold axis, giving a total of two and a half molecules per asymmetric unit. Each metal centre is coordinated equatorially by three 2,2,:6,,2,,-terpyridine (terpy) N-donor atoms and axially by two perchlorate O-donor atoms. The distorted pentagonal bipyramidal geometry is completed by two equatorial O-donor atoms from two perchlorate anions which bridge to two different adjacent metal centres. The coordination about each metal centre is very similar to that seen at the unique PbII centre in the previously published polymorph [Engelhardt, Harrowfield, Miyamae, Patrick, Skelton, Soudi & White (1996). Aust. J. Chem.49, 1135,1146], but the new polymorph differs from it by the insertion on each side of an existing [bis(perchlorato)(terpy)lead(II)] molecule of two additional such units. Pairs of asymmetrically bridging perchlorate anions link irregularly spaced PbII centres into undulating chains parallel to [201] which exhibit a repeat distance of 26.280,(4),Å. The significance of this new polymorph lies in the fact that, while it is chemically identical to the known polymorph, it is structurally distinct from it. [source] trans -[1,3-Bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido(triphenylphosphine-,P)palladium(II)ACTA CRYSTALLOGRAPHICA SECTION C, Issue 6 2007Hayati Türkmen The title complex, [PdCl2(C21H26N2)(C18H15P)], shows slightly distorted square-planar coordination around the PdII metal centre. The Pd,C bond distance between the N-heterocyclic ligand and the metal atom is 2.028,(5),Å. The dihedral angle between the two trimethylphenyl ring planes is 36.9,(2)°. [source] A new optically pure half-sandwich Cp,Ru diphosphine complex with a chiral metal centre, (S)-Ru(,5 -C5H5)(EPHOS)Cl {EPHOS is (+)-(1R,2S)-2-[(diphenylphosphino)methylamino]-1-phenylpropyl diphenylphosphinite}ACTA CRYSTALLOGRAPHICA SECTION C, Issue 11 2002Pierre Haquette The crystal structure of the title compound, chloro(,5 -cyclopentadienyl){(1R,2S)-2-[(diphenylphosphino)methylamino]-1-phenylpropyl diphenylphosphinite-,2P,P,}ruthenium(II), [Ru(C5H5)Cl(C34H33NOP2)], is reported. The pseudo-octahedral complex is chiral and the configuration at the Ru atom is S. The seven-membered metallacycle adopts a boat-like conformation. [source] mer -Trichlorotris(1,3-thiazole- N)ruthenium(III)ACTA CRYSTALLOGRAPHICA SECTION C, Issue 10 2000Claudia Pifferi The potentially cytostatic title compound, mer -[RuCl3(C3H3NS)3], is the first RuIII,thz (thz is 1,3-thiazole) complex characterized via X-ray diffraction and consists of discrete complex molecules with an octahedral coordination sphere in which the metal centre is linked to three chloride ions and to three thz ligands through the N atoms. The Ru,Cl and Ru,N bond distances average 2.3462,(6) and 2.0851,(19),Å, respectively. [source] trans -(2-Methylthiobenzoato- O)phenylbis(triphenylphosphine)palladium(II), two conformational isomersACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2000Gert J. Kruger The title compound, trans -[Pd(C6H5)(C8H7O2S)(C18H15P)2], crystallizes in two modifications differing only in the orientation of the 2-methylthiobenzoato ligand. In both cases, this ligand binds to the metal centre via one O atom in a monodentate fashion. The only significant difference is a rotation about the C(Ph),COO bond, with O,C,C,C torsion angles having values of 6.3,(7) and 157.3,(3)° in the two isomeric forms. [source] An orthorhombic form of Escherichia coli aminopeptidase P at 2.4,Å resolutionACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2003Stephen C. Graham Aminopeptidase P (AMPP) from Escherichia coli cleaves the N-terminal residue from an oligopeptide if the second residue is proline. The active site contains a dinuclear metal centre. Following earlier structural analyses of crystals in space groups P6422 and I4122, the structure of AMPP has been solved and refined in the orthorhombic space group C2221 at 2.4,Å resolution. There are six subunits in the asymmetric unit. These are arranged in two types of tetramer. One tetramer comprises four crystallographically independent subunits, while the other comprises two pairs of subunits related by a crystallographic twofold axis. The final model of 20,994 protein atoms, 1618 water molecules and 12 metal atoms refined to residuals R = 0.195 and Rfree = 0.215. The molecular structure confirms most of the previously reported features, including the subunit,subunit interfaces in the tetramer and persistent disorder at some residues. The metal,ligand bond lengths at the active site suggest that one of the two Mn atoms is five-coordinate rather than six-coordinate. [source] Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preferenceACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2008Colin J. Jackson The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2,Å to a final R factor of 17.1%. The structure was originally solved to 2.9,Å resolution using SAD phases from Zn2+ metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol.367, 1047,1062]. However, the 2.9,Å resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe2+ metal-ion preference are discussed. [source] Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards AnionsCHEMISTRY - A EUROPEAN JOURNAL, Issue 42 2009Massimo Boiocchi Dr. Abstract Copper(II) azacyclam complexes 32+ and 42+ were obtained through a metal-templated procedure involving the pertinent open-chain tetramine, formaldehyde and a phenylurea derivative as a locking fragment. Both metal complexes can establish interactions with anions through the metal centre and the amide NH group. Equilibrium studies in DMSO by a spectrophotometric titration technique were carried out to assess the affinity of 32+ and 42+ towards anions. While the NH group of an amide model compound and the metal centre of the plain CuII(azacyclam)2+ complex do not interact at all with anions, 32+ and 42+ establish strong interactions with oxo anions, profiting from a pronounced cooperative effect. In particular, 1),they form stable 1:1 and 1:2 complexes with H2PO4, ions in a stepwise mode with both hydrogen-bonding and metal,ligand interactions, and 2),in the presence of CH3COO,, they undergo deprotonation of the amido NH group and thus profit from axial coordination of the partially negatively charged carbonyl oxygen atom in a scorpionate binding mode. [source] Bonding and Bending in Zirconium(IV) and Hafnium(IV) HydrazidesCHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2008Heike Herrmann Dr. Abstract Reaction of the dichloro complexes [M(N2TBSNpy)Cl2] (M=Zr: 1, Hf: 2; TBS: tBuMe2Si; py: pyridine) with one molar equivalent of LiNHNPh2 gave mixtures of the two diastereomeric chlorohydrazido(1,) complexes [M(N2TBSNpy)(NHNPh2)Cl] (M=Zr: 3,a,b, Hf: 4,a,b) in which the diphenylhydrazido(1,) ligand adopts a bent ,1 coordination. This mixture of isomers could be cleanly converted into the deep green diphenylhydrazido(2,) complexes [Zr(N2TBSNpy)(NNPh2)(py)] (5) and [Hf(N2TBSNpy)(NNPh2)(py)] (6), respectively, by dehydrohalogenation with lithium hexamethyldisilazide (LiHMDS) in the presence of one molar equivalent of pyridine. Both complexes contain a linearly coordinated hydrazinediide for which a DFT-based frontier orbital analysis established bonding through one , and two , orbitals. A high polarity of the MN bond was found, in accordance with the description of hydrazinediide(2,) acting as a six-electron donor ligand. The pyridine ligand in [M(N2TBSNpy)(NNPh2)(py)] (M=Zr: 5, Hf: 6) is substitutionally labile as established by line-shape analysis of the dynamic spectra (,G,=19,kcal,mol,1). A change in denticity of the hydrazido unit from ,1 to ,2 was studied by DFT methods. Both forms are calculated to be very close in energy and are only separated by shallow activation barriers, which supports the notion of a rapid ,1 to ,2 interconversion. This process is believed to happen early on in the NN scission in the presence of coupling reagents. Frontier orbital and natural population analyses suggest that a primarily charge-controlled nucleophilic attack at N, is unlikely whereas interaction with an electrophile could play an important role. This hypothesis was tested by the reaction of 5 and 6 with one molar equivalent of B(C6F5)3 to give [Zr(N2TBSNpy)(NNPh2){B(C6F5)3}] (7) and [Hf(N2TBSNpy)(NNPh2){B(C6F5)3}] (8). In these products, B(C6F5)3 becomes attached to the N, atom of the side-on bound hydrazinediide and there is an additional interaction of an ortho -F atom of a C6F5 ring with the metal centre. [source] Three-Component Entanglements Consisting of Three Crescent-Shaped Bidentate Ligands Coordinated to an Octahedral Metal CentreCHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2007Fabien Durola Abstract 3,3,-Biisoquinoline ligands (biiq) L, bearing aromatic substituents on their 8 and 8, positions, have been used to generate interwoven systems consisting of three crescent-shaped ligands disposed around an octahedral metal centre. Mono-ligand complexes of the type [ReL(CO)3py]+ (py: pyridine) have also been prepared, leading to sterically non-hindering complexes in spite of the endotopic nature of the chelate used. The three-component entanglements have been prepared by using either FeII or RuII as gathering metal centre. The synthetic procedure is simple and efficient, affording fully characterised complexes as their PF6 or SbCl6 salts. X-ray crystallography clearly shows that the crescent-shaped ligands do not repel each other in the tris-chelate complexes. In an analogous way, the ReI complexes show open structures with no steric repulsion between the L ligand and the ancillary CO or py groups. The FeL3 or RuL3 compounds are very unusual in the sense that, contrary to all the other tris-bidentate chelate complexes made till now, the three organic components are tangled up, in a situation which will be very favourable to the formation of new non trivial topologies of the catenane type. [source] Influence of the Protonic State of an Imidazole-Containing Ligand on the Electrochemical and Photophysical Properties of a Ruthenium(II),Polypyridine-Type ComplexCHEMISTRY - A EUROPEAN JOURNAL, Issue 29 2007Annamaria Quaranta Dr. Abstract The synthesis and characterisation of [Ru(bpy)2(PhenImHPh)]2+ where PhenImHPh represents the 2-(3,5-di- tert -butylphenyl)imidazo[4,5- f][1,10]phenanthroline ligand are described. The compounds issued from the three different protonic states of the imidazole ring [Ru(bpy)2(PhenImPh)]+ (I), [Ru(bpy)2(PhenImHPh)]2+ (II) and [Ru(bpy)2(PhenImH2Ph)]3+ (III) were isolated and spectroscopically characterised. The X-ray structures of [Ru(bpy)2(PhenImPh)](PF6),H2O,6,MeOH, [Ru(bpy)2(PhenImHPh)](NO3)2,H2O,3,MeOH and [Ru(bpy)2(PhenImH2Ph)](PF6)3, 5,H2O are reported. Electrochemical data obtained on these complexes indicate almost no potential shift for the RuIII/II redox couple. Therefore a Coulombic effect between the imidazole ring and the metal centre can be ruled out. The monooxidised forms of I and II have been characterised by EPR spectroscopy and are reminiscent of the presence of a radical species. The emission properties of the parent compound [Ru(bpy)2(PhenImHPh)]2+ were studied as a function of pH and both the lifetimes and intensities decreased upon deprotonation. Photophysical properties, investigated in the absence and presence of an electron acceptor (methylviologen), were distinctly different for the three compounds. Transient absorption features indicate that unique excited states are involved. Theoretical data obtained from DFT calculations in water on the three protonic forms are presented and discussed in the light of the experimental results. [source] Hydrolysis of Dinuclear Ruthenium Complexes [{CpRu(PPh3)2}2(,,,1:1 -L)][CF3SO3]2 (L=P4, P4S3): Simple Access to Metal Complexes of P2H4 and PH2SHCHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2007Pierluigi Barbaro Dr. Abstract The reaction of [CpRu(PPh3)2Cl] (1) with half an equivalent of P4 or P4S3 in the presence of AgCF3SO3 as chloride scavenger affords the stable dimetal complexes [{CpRu(PPh3)2}2(,,,1:1 -P4)][CF3SO3]2, 3,CH2Cl2 (2) and [{CpRu(PPh3)2}2(,,,1:1 -Papical -Pbasal -P4S3)][CF3SO3]2, 0.5,C7H8 (3), in which the tetrahedral P4 and mixed-cage P4S3 molecules are respectively bound to two CpRu(PPh3)2 fragments through two phosphorus atoms. The coordinated cage molecules, at variance with the free ligands, readily react with an excess of water in THF under mild conditions. Among the hydrolysis products, the new, remarkably stable complexes [{CpRu(PPh3)2}2(,,,1:1 -P2H4)][CF3SO3]2 (4) and [CpRu(PPh3)2(,1 -PH2SH)]CF3SO3 (8) were isolated. In the former, diphosphane, P2H4, is coordinated to two CpRu(PPh3)2 fragments, and in the latter thiophosphinous acid, H2PSH, is coordinated to the metal centre through the phosphorus atom. All compounds were characterised by elemental analyses and IR and NMR spectroscopy. The crystal structures of 2, 3, 4 and 8 were determined by X-ray diffraction. [source] Unexpected Structural Diversity in Alkali Metal Azide-Crown Ether Complexes: Syntheses, X-ray Structures, and Quantum-Chemical CalculationsCHEMISTRY - A EUROPEAN JOURNAL, Issue 9 2006Michael D. Brown Abstract A series of alkali metal azide-crown ether complexes, [Li([12]crown-4)(N3)], [Na([15]crown-5)(N3)], [Na([15]crown-5)(H2O)2]N3, [K([18]crown-6)(N3)(H2O)], [Rb([18]crown-6)(N3)(H2O)], [Cs([18]crown-6)(N3)]2, and [Cs([18]crown-6)(N3)(H2O)(MeOH)], has been synthesised. In most cases, single crystals were obtained, which allowed X-ray crystal structures to be derived. The structures obtained have been compared with molecular structures computed by density functional theory (DFT) calculations. This has allowed the effects of the crystal lattice on the structures to be investigated. Also, a study of the MNterminal metal,azide bond length and charge densities on the metal (M) and terminal nitrogen centre (Nterminal) in these complexes has allowed the nature of the metal,azide bond to be probed in each case. The bonding in these complexes is believed to be predominantly ionic or ion-dipole in character, with the differences in geometries reflecting the balance between maximising the coordination number of the metal centre and minimising ligand-ligand repulsions. The structures of the crown ether complexes determined in this work show the subtle interplay of such factors. The significant role of hydrogen bonding is also demonstrated, most clearly in the structures of the K and Rb dimers, but also in the chain structure of the hydrated Cs complex. [source] Thermal Effects and Vibrational Corrections to Transition Metal NMR Chemical ShiftsCHEMISTRY - A EUROPEAN JOURNAL, Issue 21 2004Sonja Grigoleit Dr. Abstract Both zero-point and classical thermal effects on the chemical shift of transition metals have been calculated at appropriate levels of density functional theory for a number of complexes of titanium, vanadium, manganese and iron. The zero-point effects were computed by applying a perturbational approach, whereas classical thermal effects were probed by Car,Parrinello molecular dynamics simulations. The systematic investigation shows that both procedures lead to a deshielding of the magnetic shielding constants evaluated at the GIAO-B3,LYP level, which in general also leads to a downfield shift in the relative chemical shifts, ,. The effect is small for the titanium and vanadium complexes, where it is typically on the order of a few dozen ppm, and is larger for the manganese and iron complexes, where it can amount to several hundred ppm. Zero-point corrections are usually smaller than the classical thermal effect. The pronounced downfield shift is due to the sensitivity of the shielding of the metal centre with regard to the metal,ligand bond length, which increase upon vibrational averaging. Both applied methods improve the accuracy of the chemical shifts in some cases, but not in general. [source] Synthesis and Properties of para -Substituted NCN-Pincer Palladium and Platinum ComplexesCHEMISTRY - A EUROPEAN JOURNAL, Issue 6 2004Martijn Q. Slagt Dr. Abstract A variety of para -substituted NCN-pincer palladium(II) and platinum(II) complexes [MX(NCN-Z)] (M=PdII, PtII; X=Cl, Br, I; NCN-Z=[2,6-(CH2NMe2)2C6H2 -4-Z],; Z=NO2, COOH, SO3H, PO(OEt)2, PO(OH)(OEt), PO(OH)2, CH2OH, SMe, NH2) were synthesised by routes involving substitution reactions, either prior to or, notably, after metalation of the ligand. The solubility of the pincer complexes is dominated by the nature of the para substituent Z, which renders several complexes water-soluble. The influence of the para substituent on the electronic properties of the metal centre was studied by 195Pt NMR spectroscopy and DFT calculations. Both the 195Pt chemical shift and the calculated natural population charge on platinum correlate linearly with the ,p Hammett substituent constants, and thus the electronic properties of predesigned pincer complexes can be predicted. The ,p value for the para -PtI group itself was determined to be ,1.18 in methanol and ,0.72 in water/methanol (1/1). Complexes substituted with protic functional groups (CH2OH, COOH) exist as dimers in the solid state due to intermolecular hydrogen-bonding interactions. Een verscheidenheid aan para-gesubstitueerde NCN-pincer-palladium(II) en -platina(II) complexen [MX(NCN-Z)] (M=PdII, PtII; X=Cl, Br, I; NCN-Z=[2,6-(CH2NMe2)C6H2 -4-Z],; Z=NO2, COOH, SO3H, PO(OEt)2, PO(OH)(OEt), PO(OH)2, CH2OH, SMe, NH2) is gesynthetiseerd via substitutiereacties zowel voor, en hoogst opmerkelijk, ook na de metallering van het ligand. De oplosbaarheid van de pincer-complexen wordt gedomineerd door de aard van de para -substituent Z, waardoor enkele van de complexen wateroplosbaar zijn. De invloed van de para -substituent op de elektronische eigenschappen van het metaalcentrum is bestudeerd met behulp van195Pt-NMR en DFT-berekeningen. Zowel de chemische verschuiving van de195Pt-kern, als de berekende ,natural population, lading op platina vertonen een lineaire correlatie met de ,pHammett-substituentconstante, hetgeen het voorspellen van de elektronische eigenschappen van nieuwe pincercomplexen mogelijk maakt. De ,p -waarde van de para-PtI eenheid blijkt respectievelijk ,1.18 in methanol en ,0.72 in waterige methanol (1/1, v/v) te zijn. Door de aanwezigheid van intermoleculaire waterstofbruggen komen de complexen met protische functionele groepen (CH2OH, COOH) in de vaste stof voor als dimeren. [source] Mono- and Binuclear Arylnickel Complexes of the ,-Diimine Bridging Ligand 2,2,-Bipyrimidine (bpym)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2010Axel Klein Abstract The mono- and binuclear organometallic NiII complexes [(,-bpym){Ni(Mes)Br}n] (bpym = 2,2,-bipyrimidine; n = 1 or 2; Mes = mesityl = 2,4,6-trimethylphenyl) were prepared and characterised electrochemically and spectroscopically (NMR, UV/Vis/NIR) in detail. The long-wavelength absorptions for the binuclear complex reveal a marked electronic coupling of the two metal centres over the ligand bridge via their low-lying ,*-orbitals. While the mononuclear complex undergoes rapid dissociation of the bromido ligand after one-electron reduction the binuclear derivative exhibits reversible reductive electrochemistry and both of them yield stable radical anionic complexes with mainly bpym ligand centred spin density as shown by EPR spectroscopy of the free ligand bpym and the nickel complexes. The molecular structure of the binuclear bpym complex [(,-bpym){Ni(Mes)Br}2] was studied by EXAFS in comparison to the mononuclear analogue [(bpym)Ni(Mes)Br] revealing markedly increased Ni,C/N distance of the first coordination shell for the binuclear derivative suggesting an optimum overlap for the mononuclear complex, while two nickel complex fragments {Ni(Mes)Br} are seemingly too large to fit into the bis-chelate coordination site. [source] Divanadium(V) and Trapped Valence Linear Tetravanadium(IV,V,V,IV) ComplexesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 35 2009Anindita Sarkar Abstract In an acetonitrile/water mixture, reactions of the N,N,-bis(diacetyl)hydrazine (H2diah), bis(acetylacetonato)oxidovanadium(IV) [VO(acac)2] and monodentate N -coordinating heterocycles (hc) in a 1:2:2 mol ratio provide yellow divanadium(V) complexes of formula [(hc)O2V(,-diah)VO2(hc)] (1, hc = imidazole; 2, hc = pyrazole; 3, hc = 3,5-dimethyl pyrazole). On the other hand, in the same solvent mixture reactions of the same reagents in a 1:4:2 mol ratio produce green linear tetravanadium(IV,V,V,IV) complexes of formula [(acac)2OV(,-O)VO(hc)(,-diah)(hc)OV(,-O)VO(acac)2] (4, hc = imidazole; 5, hc = pyrazole; 6, hc = 3,5-dimethyl pyrazole). The complexes 1,6 have been characterized by elemental analysis, magnetic susceptibility, and various spectroscopic and electrochemical measurements. The X-ray crystal structures of 1, 3 and 6 have been determined. In all three structures, the diazine ligand diah2, is in trans configuration. Metal-centred bond parameters are consistent with the localized electronic structure of the two trans -bent {OV(,-O)VO}3+ cores present in 6. The pentavalent metal centres in 1, 3 and 6 are in a distorted trigonal-bipyramidal N2O3 coordination environment, while the terminal tetravalent metal centres in 6 are in a distorted octahedral O6 coordination sphere. The eight-line EPR spectra of the tetravanadium species (4,6) in dimethyl sulfoxide at ambient temperature indicate the rare valence localized electronic structure in the fluid phase. All the complexes are redox active and display metal-centred electron transfer processes in dimethyl sulfoxide solution. A reduction within ,0.78 to ,0.94 V (vs. Ag/AgCl) is observed for the divanadium(V) species 1,3, while a reduction and an oxidation are observed in the potential ranges ,0.82 to ,0.90 V and 0.96 to 1.12 V (vs. Ag/AgCl), respectively, for the tetravanadium species 4,6. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Magnetic and Electrochemical Properties of a Heterobridged ,-Phenoxido,,1,1 -Azide Dinickel(II) Compound: A Unique Example Demonstrating the Bridge Distance Dependency of Exchange IntegralEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 33 2009Rajesh Koner Abstract The synthesis, structure, magnetic and electrochemical properties of the heterobridged ,-phenoxido,,1,1 -azide dinickel(II) compound [NiII2(HL1)3(,1,1 -N3)]·3H2O (1) derived from the tetradentate Schiff base ligand N -(2-hydroxyethyl)-3-methoxysalicylaldimine (H2L1) are described. The title compound crystallizes in the triclinic system (space group P). Electrochemical analyses reveal that compound 1 exhibits two-step quasireversible couples in the reduction window with E1/2 values of ,1412 and ,1762 mV. The variable-temperature (2,300 K) magnetic susceptibilities at 1 T of the title compound were measured. The interaction between the metal centres is weak ferromagnetic (J = 5.0 cm,1, g = 2.23, D1 = 29.2 cm,1 and D2 = 10.7 cm,1). Comparison of the exchange integral of 1 with that of the only reported ,-phenoxido,,1,1 -azide dinickel(II) compound results in the emergence of a unique example of the dependence of strength of magnetic exchange interaction on the metal,ligand bridge distance. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] |