Home About us Contact | |||
Metabolite Formation (metabolite + formation)
Selected AbstractsHuman receptor kinetics, tissue binding affinity, and stability of mometasone furoateJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2004Anagnostis Valotis Abstract Mometasone furoate (MF) is a topically used glucocorticoid with high anti-inflammatory potency. In contrast to the wealth of data derived from clinical studies, information about the molecular pharmacology of the compound is lacking or contradictory. Thus, we elucidated the characteristics of receptor binding kinetics and receptor affinity in a bioassay. Metabolite formation was determined in human plasma and lung tissue as well as binding affinity to human lung tissue. Fast and extensive association of MF to the human glucocorticoid receptor was observed while the dissociation of the MF,receptor complex was faster compared to fluticasone propionate (FP). The relative receptor affinity of MF was calculated as 2200 (dexamethasone,=,100, FP,=,1800) and confirmed in a bioassay measuring the induction of the glucocorticoid regulated protein CD163 in human monocytes. In plasma and human lung tissue MF formed a 9,11-epoxy degradation product. The binding affinity of MF to human lung tissue was low compared to FP due to fast redistribution from tissue into plasma. These molecular pharmacological properties are in accordance with clinical data. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1337,1350, 2004 [source] The Role of Human CYP2C8 and CYP2C9 Variants in Pioglitazone Metabolism In VitroBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2009Eugen Muschler The present study was conducted to further clarify the role of individual CYPs and of the CYP2C8/9 polymorphisms in the primary metabolism of pioglitazone in vitro. Pioglitazone (2,400 ,M) was incubated with isolated cytochrome P450 enzymes or human liver microsomes, some of them carrying either the CYP2C8*3/*3 genotype (and also the CYP2C9*2/*2 genotype) or the CYP2C8*1/*1 genotype (five samples each). The formation of the primary pioglitazone metabolite M-IV was monitored by HPLC. Enzyme kinetics were estimated assuming a single binding site. Mean intrinsic clearance of pioglitazone to the metabolite M-IV was highest for CYP2C8 and CYP1A2 with 58 pmol M-IV/min/nmol CYP P450/,M pioglitazone each, 53 for CYP2D6*1, 40 for CYP2C19*1, and 34 for CYP2C9*2, respectively. CYP2A6, CYP2B6, CYP2C9*1, CYP2C9*3, CYP2E1, CYP3A4 and CYP3A5 did not form quantifiable amounts of M-IV. CYP2C8*1/*1 microsomes (25 ± 4 pmol M-IV/min/mg protein/,M pioglitazone) showed lower intrinsic clearance of pioglitazone than CYP2C8*3/*3 microsomes (35 ± 9, p = 0.04). In all samples, metabolite formation showed substrate inhibition, while pioglitazone did not inhibit CYP2C8-mediated paclitaxel metabolism. CYP2C8, CYP1A2 and CYP2D6 are major CYPs forming M-IV in vitro. The higher activity of CYP2C8*3/CYP2C9*2 microsomes may result from a contribution of CYP2C9*2, or from differences in CYP2C8 expression. The evidence for substrate-specific inhibitory effects of pioglitazone on CYP2C-mediated metabolism needs to be tested in further studies. [source] Contributions of human cytochrome P450 enzymes to glyburide metabolismBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2010Lin Zhou Abstract Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. The therapeutic use of GLB is often complicated by a substantial inter-individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter-individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. The present study systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9 and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8 or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, it was found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4,17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro metabolism of GLB. Copyright © 2010 John Wiley & Sons, Ltd. [source] The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liverBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2 2002Janet K. Coller Aims, To investigate in a large panel of 50 human liver samples the contribution of CYP2C9, CYP2D6, and CYP3A4 to the overall formation of the potent antioestrogen Z-4-hydroxy-tamoxifen, and how various genotypes affect its formation from tamoxifen. Methods, The formation of Z-4-hydroxy-tamoxifen from 10 µm tamoxifen was studied in human liver microsomes (n=50), characterized for CYP2B6, CYP2C9, CYP2D6 and CYP3A4 expression, and CYP2B6, CYP2C9 and CYP2D6 genotype. The effect of chemical and monoclonal antibody inhibitors, and the formation in supersomes expressing recombinant CYP isoforms was also investigated. Z-4-hydroxy-tamoxifen was quantified using LC-MS analysis. Results, Z-4-hydroxy-tamoxifen was formed by supersomes expressing CYP2B6, CYP2C9, CYP2C19 and CYP2D6, but not CYP3A4. In agreement with these data, the mean formation of Z-4-hydroxy-tamoxifen was inhibited 49% by sulphaphenazole (P=0.001), 38% by quinidine (P<0.05) and 13% by monoclonal antibody against CYP2B6 (MAB-2B6, P<0.05). Furthermore, Z-4-hydroxy-tamoxifen formation significantly correlated with both CYP2C9 expression (rs=0.256, P<0.05) and CYP2D6 expression (rs=0.309, P<0.05). Genotypes of CYP2D6, CYP2B6 and CYP2C9 had an effect on metabolite formation in such a way that samples with two nonfunctional CYP2D6, or two variant CYP2C9 or CYP2B6 alleles, showed lower enzyme activity compared with those with two functional or wild-type alleles, (5.0 vs 9.9 pmol mg,1 protein min,1, P=0.046, 5.1 vs 9.9 pmol mg,1 protein min,1, P=0.053, and 6.8 vs 9.4 pmol mg,1 protein min,1, P=0.054, respectively). CYP2D6 and CYP2C9 contribute on average 45 and 46%, respectively, to the overall formation of Z-4-hydroxy-tamoxifen. Conclusions,CYP2B6, CYP2C9 and CYP2D6 genotypes all affected Z-4-hydroxy-tamoxifen formation and can predict individual ability to catalyse this reaction. [source] |