Home About us Contact | |||
Metabolism Enzymes (metabolism + enzyme)
Selected AbstractsEnzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplankiFEBS JOURNAL, Issue 20 2010Kanako Mitsumasu Larvae of an anhydrobiotic insect, Polypedilum vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTps,/,) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTps, did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis. [source] Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of developmentPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2010Malgorzata Czarna Abstract In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CMÔRos showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development. [source] Subproteome analysis of the neutrophil cytoskeletonPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 7 2009Ping Xu Abstract Neutrophils play a key role in the early host-defense mechanisms due to their capacity to migrate into inflamed tissues and phagocytose microorganisms. The cytoskeleton has an essential role in these neutrophil functions, however, its composition is still poorly understood. We separately analyzed different cytoskeletal compartments: cytosolic skeleton, phagosome membrane skeleton, and plasma membrane skeleton. Using a proteomic approach, 138 nonredundant proteins were identified. Proteins not previously known to associate with the skeleton were: n -acetylglucosamine kinase, phosphoglycerate mutase 1, prohibitin, ficolin-1, phosphogluconate dehydrogenase, glucosidase, transketolase, major vault protein, valosin-containing protein, aldehyde dehydrogenase, and lung cancer-related protein-8 (LCRP8). The majority of these proteins can be classified as energy metabolism enzymes. Such a finding was interesting because neutrophil energy metabolism is unusual, mainly relying on glycolysis. The enrichment of phosphoglycerate mutase in cytosolic skeleton was additionally indicated by the use of Western blotting. This is the broadest subcellular investigation to date of the neutrophil cytoskeletal proteome and the first proteomic analysis in any cell type of the phagosome skeleton. The association of metabolic enzymes with cytoskeleton is suggestive of the importance of their localized enrichment and macromolecular organization in neutrophils. [source] Differential expression of sarcoplasmic proteins in four heterogeneous ovine skeletal musclesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2007Muriel Hamelin Abstract Fiber-type distribution is known to vary widely within and between muscles according to differences in muscle functions. 2-DE and MALDI-MS were used to investigate the molecular basis of muscle fiber type-related variability. We compared four lamb skeletal muscles with heterogeneous fiber-type composition that are relatively rich in fast-twitch fiber types, i.e., the semimembranosus, vastus medialis, longissimus dorsi, and tensor fasciae latae (TL). Our results clearly showed that none of the glycolytic metabolism enzymes detected, including TL which was most strongly glycolytic, made intermuscular differentiation possible. Muscle differentiation was based on the differential expression of proteins involved in oxidative metabolism, including not only citric acid cycle enzymes but also other classes of proteins with functions related to oxidative metabolism, oxidative stress, and probably to higher protein turnover. Detected proteins were involved in transport (carbonate dehydratase, myoglobin, fatty acid-binding protein), repair of misfolding damage (heat shock protein (HSP) 60,kDa, HSP-27,kDa, alpha-crystallin beta subunit, DJ1, stress-induced phosphoprotein), detoxification or degradation of impaired proteins (GST-Pi, aldehyde dehydrogenase, peroxiredoxin, ubiquitin), and protein synthesis (tRNA-synthetase). The fractionating method led to the detection of proteins involved in different functions related to oxidative metabolism that have not previously been shown concomitancy. [source] Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A: Cholesterol Acyltransferase (ACAT)THE PROSTATE, Issue 1 2008Jennifer A. Locke Abstract BACKGROUND The objective of this work was to determine the effect of an androgen agonist, R1881, on intracellular cholesterol synthesis and esterification in androgen-sensitive (AS) prostate cancer (LNCaP) cells. METHODS We investigated the activity and expression of cholesterol metabolism enzymes, HMG-CoA-reductase and ACAT in the LNCaP and PC-3 (androgen-independent control) models. RESULTS Microsomal PC-3 HMG-CoA-reductase activity was increased with R1881 despite having similar cholesterol levels while increased cholesterol levels in microsomes from LNCaPs treated with R1881 (L+) were associated with increased HMG-CoA reductase activity. Increased intracellular cholesteryl esters (CE) found in (L+) were not associated with an increased ACAT1 activity. There was no effect from androgen treatment on ACAT1 protein expression in theses cells; however, ACAT2 expression was induced upon R1881 treatment. In contrast, we found an increase in the in vitro ACAT1 activity in PC-3 cells treated with androgen (P+). Only ACAT1 expression was induced in P+. We further assessed the expression of STAT1,, a transcriptional activator that modulates ACAT1 expression. STAT1, expression and phosphorylation were induced in P+. To determine the role of the AR on ACAT1 expression and esterification, we treated PC-3 cells overexpressing the androgen receptor with R1881 (PAR+). AR expression was decreased in PAR+ cells; ACAT1 protein expression and cholesterol ester levels were also decreased, however, ACAT2 remained unchanged. STAT1, expression was decreased in PAR+. CONCLUSIONS Overall, these findings support the importance of cholesterol metabolism regulation within prostate cancer cells and unravel a novel role for STAT1, in prostate cancer metabolism. Prostate 68: 20,33, 2008. © 2007 Wiley-Liss, Inc. [source] Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transportersBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 7 2009Guoxiang Shen Abstract The nuclear transcription factor E2-related factor 2 (Nrf2) has been shown to play pivotal roles in preventing xenobiotic-related toxicity and carcinogen-induced carcinogenesis. These protective roles of Nrf2 have been attributed in part to its involvement in the induction of Phase II drug conjugation/detoxification enzymes as well as antioxidant enzymes through the Nrf2-antioxidant response element (ARE) signaling pathways. This review summarizes the current research status of the identification of Nrf2-regulated drug metabolism enzymes (DMEs), especially Phase II DMEs, and Phase III drug transporters. In addition, the molecular mechanisms underlying the coordinated regulation of Phase II DMEs and Phase III transporters will also be discussed based on findings published in the literature. Copyright © 2009 John Wiley & Sons, Ltd. [source] Analysis of NADPH supply during xylitol production by engineered Escherichia coliBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Jonathan W. Chin Abstract Escherichia coli strain PC09 (,xylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167,1176]. This study aims to understand the role of NADPH supply in xylitol yield and the contribution of key central carbon metabolism enzymes toward xylitol production. Studies in which the expression of CbXR or a xylose transporter was increased suggest that enzyme activity and xylose transport are not limiting xylitol production in PC09. A constraints-based stoichiometric metabolic network model was used to understand the roles of central carbon metabolism reactions and xylose transport energetics on the theoretical maximum molar xylitol yield (xylitol produced per glucose consumed), and xylitol yields (YRPG) were measured from resting cell biotransformations with various PC09 derivative strains. For the case of xylose-proton symport, omitting the Zwf (glucose-6-phosphate dehydrogenase) or PntAB (membrane-bound transhydrogenase) reactions or TCA cycle activity from the model reduces the theoretical maximum yield from 9.2 to 8.8, 3.6, and 8.0 mol xylitol (mol glucose),1, respectively. Experimentally, deleting pgi (encoding phosphoglucose isomerase) from strain PC09 improves the yield from 3.4 to 4.0 mol xylitol (mol glucose),1, while deleting either or both E. coli transhydrogenases (sthA and pntA) has no significant effect on the measured yield. Deleting either zwf or sucC (TCA cycle) significantly reduces the yield from 3.4 to 2.0 and 2.3 mol xylitol (mol glucose),1, respectively. Expression of a xylose reductase with relaxed cofactor specificity increases the yield to 4.0. The large discrepancy between theoretical maximum and experimentally determined yield values suggests that biocatalysis is compromised by pathways competing for reducing equivalents and dissipating energy. The metabolic role of transhydrogenases during E. coli biocatalysis has remained largely unspecified. Our results demonstrate the importance of direct NADPH supply by NADP+ -utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions, and suggest that the pool of reduced cofactors available for biotransformation is not readily interchangeable via transhydrogenase. Biotechnol. Bioeng. 2009;102: 209,220. © 2008 Wiley Periodicals, Inc. [source] |