Metabolically Active (metabolically + active)

Distribution by Scientific Domains

Terms modified by Metabolically Active

  • metabolically active cell

  • Selected Abstracts


    Regional Fos expression induced by morphine withdrawal in the 7-day-old rat

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 7 2009
    Anika A. McPhie
    Abstract Human infants are often exposed to opiates chronically but the mechanisms by which opiates induce dependence in the infant are not well studied. In the adult the brain regions involved in the physical signs of opiate withdrawal include the periaqueductal gray area, the locus coeruleus, amygdala, ventral tegmental area, nucleus accumbens, hypothalamus, and spinal cord. Microinjection studies show that many of these brain regions are involved in opiate withdrawal in the infant rat. Our goal here was to determine if these regions become metabolically active during physical withdrawal from morphine in the infant rat as they do in the adult. Following chronic morphine or saline treatment, withdrawal was precipitated in 7-day-old pups with the opiate antagonist naltrexone. Cells positive for Fos-like immunoreactivity were quantified within select brain regions. Increased Fos-like labeled cells were found in the periaqueductal gray, nucleus accumbens, locus coeruleus, and spinal cord. These are consistent with other studies showing that the neural circuits underlying the physical signs of opiate withdrawal are similar in the infant and adult. © 2009 Wiley Periodicals, Inc. Dev Psychobiol 51: 544,552, 2009. [source]


    Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2008
    Anna Edlund
    Summary Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179, ,64 and ,337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labelled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labelled DNA and DNA from reverse transcription polymerase chain reaction showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences, indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths. [source]


    Copper-mediated reversal of defective laccase in a ,vph1 avirulent mutant of Cryptococcus neoformans

    MOLECULAR MICROBIOLOGY, Issue 4 2003
    Xudong Zhu
    Summary Previous studies have shown that a ,vph1 Cryptococcus neoformans mutant defective in vesicular acidification lacked several important virulence factors including a copper-containing laccase and was avirulent in a mouse model. In the present studies, we characterized laccase transcription and protein production to obtain insights into the mechanism of the vph1 mutation in this pathogen. Although transcription and protein expression were somewhat reduced, laccase protein was found to be successfully translated and correctly targeted to the cell wall in the ,vph1 mutant as shown by Western blot and immuno-electron microscopy, despite a complete lack of laccase activity. Laccase activity was substantially restored in metabolically active ,vph1 cells at 30°C by addition of 100 µM copper sulphate. This restoration by copper was found to occur through both transcriptional and post-translational mechanisms. Laccase transcriptional induction by copper was found to be dependent on enhancer region II within the 5,-untranslated region of CNLAC1. Copper was also found to restore partial activity to ,vph1 cells at 0°C, suggesting that cell wall laccase was expressed in the mutant as an apo-enzyme. Apo-laccase restoration by copper was found to be facilitated by an acidic environment, consistent with a role for the vacuolar (H+)-ATPase proton pump in copper assembly of laccase in C. neoformans. [source]


    Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cells

    THE JOURNAL OF PHYSIOLOGY, Issue 2 2007
    Santanu Bose
    Cells that are metabolically active and in a high degree of differentiation and proliferation require cobalamin (Cbl: vitamin B12) and they obtain it from the circulation bound to transcobalamin (TC) via the transcobalamin receptor (TC-R). This study has investigated the plasma membrane dynamics of TC-R expression in polarized human intestinal epithelial Caco-2 cells using techniques of pulse-chase labelling, domain-specific biotinylation and cell fractionation. Endogenously synthesized TC-R turned over with a half-life (T1/2) of 8 h following its delivery to the basolateral plasma membrane (BLM). The T1/2 of BLM delivery was 15 min and TC-R delivered to the BLM was endocytosed and subsequently degraded by leupeptin-sensitive proteases. However, about 15% of TC-R endocytosed from the BLM was transcytosed (T1/2, 45 min) to the apical membranes (BBM) where it underwent endocytosis and was degraded. TC-R delivery to both BLM and BBM was inhibited by Brefeldin A and tunicamycin, but not by wortmannin or leupeptin. Colchicine inhibited TC-R delivery to BBM, but not BLM. At steady state, apical TC-R was associated with megalin and both these proteins were enriched in an intracellular compartment which also contained Rab5 and transferrin receptor. These results indicate that following rapid delivery to both plasma membrane domains of Caco-2 cells, TC-R undergoes constitutive endocytosis and degradation by leupeptin-sensitive proteases. TC-R expressed in apical BBM complexes with megalin during its transcytosis from the BLM. [source]


    A Recombinant Bacteriophage-Based Assay for the Discriminative Detection of Culturable and Viable but Nonculturable Escherichia coli O157:H7

    BIOTECHNOLOGY PROGRESS, Issue 3 2006
    Raheela Awais
    A previously green fluorescent protein (GFP)-labeled PP01 virulent bacteriophage, specific to Escherichia coli O157:H7, was used to construct lysozyme-inactivated GFP-labeled PP01 phage (PP01e - /GFP). The new recombinant phage lacked lytic activity because of the inactivation of gene e, which produces the lysozyme responsible for cell lysis. Gene e was inactivated by inserting an amber stop codon. Prolonged incubation ofE. coli O157:H7 cells with PP01e - /GFP did not lead to cell lysis, while the propagation of PP01e - /GFP in host cells increased the intensity of green fluorescence. Retention of cell morphology and increase in fluorescence enabled the direct visualization and enumeration of E. coli O157:H7 cells within an hour. The PP01e - /GFP system, when combined with nutrient uptake analysis, further allowed the discriminative detection of culturable, viable but nonculturable (VBNC), and dead cells in the stress-induced aquatic environment. Stress-induced cells, which retained culturability, allowed phage propagation and produced bright green florescence. Nonculturable cells (VBNC and dead) allowed only phage adsorption but no proliferation and remained low fluorescent. The low-fluorescent nonculturable cells were further differentiated into VBNC and dead cells on the basis of nutrient uptake analysis. The low-fluorescent cells, which grew in size by nutrient incorporation during prolonged incubation in nutrient medium, were defined as metabolically active and in the VBNC state. The elongated VBNC cells were then easily recognizable from dead cells. The proposed assay enabled the detection and quantification of VBNC cells. Additionally, it revealed the proportion of culturable to VBNC cells within the population, as opposed to conventional techniques, which demonstrate VBNC cells as a differential value of the total viable count and the culturable cell count. [source]