Home About us Contact | |||
Metabolic Reduction (metabolic + reduction)
Selected AbstractsRegional cerebral glucose metabolism during sevoflurane anaesthesia in healthy subjects studied with positron emission tomographyACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 5 2010L. SCHLÜNZEN Background: The precise mechanism by which sevoflurane exerts its effects in the human brain remains unknown. In the present study, we quantified the effects of sevoflurane on regional cerebral glucose metabolism (rGMR) in the human brain measured with positron emission tomography. Methods: Eight volunteers underwent two dynamic 18F-fluorodeoxyglucose positron emission tomography (PET) scans. One scan assessed conscious-baseline metabolism and the other scan assessed metabolism during 1 minimum alveolar concentration (MAC) sevoflurane anaesthesia. Cardiovascular and respiratory parameters were monitored and bispectral index responses were registered. Statistical parametric maps and conventional regions of interest analysis were used to determine rGMR differences. Results: All subjects were unconsciousness at 1.0 MAC sevoflurane. Cardiovascular and respiratory parameters were constant over time. In the awake state, rGMR ranged from 0.24 to 0.35 ,mol/g/min in the selected regions. Compared with the conscious state, total GMR decreased 56% in sevoflurane anaesthesia. In white and grey matter, GMR was averaged 42% and 58% of normal, respectively. Sevoflurane reduced the absolute rGMR in all selected areas by 48,71% of the baseline (P,0.01), with the most significant reductions in the lingual gyrus (71%), occipital lobe in general (68%) and thalamus (63%). No increases in rGMR were observed. Conclusions: Sevoflurane caused a global whole-brain metabolic reduction of GMR in all regions of the human brain, with the most marked metabolic suppression in the lingual gyrus, thalamus and occipital lobe. [source] Alzheimer's disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmationANNALS OF NEUROLOGY, Issue 3 2001Satoshi Minoshima MD Seeking antemortem markers to distinguish Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), we examined brain glucose metabolism of DLB and AD. Eleven DLB patients (7 Lewy body variant of AD [LBVAD] and 4 pure diffuse Lewy body disease [DLBD]) who had antemortem position emission tomography imaging and autopsy confirmation were compared to 10 autopsy-confirmed pure AD patients. In addition, 53 patients with clinically-diagnosed probable AD, 13 of whom later fulfilled clinical diagnoses of DLB, were examined. Autopsy-confirmed AD and DLB patients showed significant metabolic reductions involving parietotemporal association, posterior cingulate, and frontal association cortices. Only DLB patients showed significant metabolic reductions in the occipital cortex, particularly in the primary visual cortex (LBVAD ,23% and DLBD ,29% vs AD ,8%), which distinguished DLB versus AD with 90% sensitivity and 80% specificity. Multivariate analysis revealed that occipital metabolic changes in DLB were independent from those in the adjacent parietotemporal cortices. Analysis of clinically-diagnosed probable AD patients showed a significantly higher frequency of primary visual metabolic reduction among patients who fulfilled later clinical criteria for DLB. In these patients, occipital hypometabolism preceded some clinical features of DLB. Occipital hypometabolism is a potential antemortem marker to distinguish DLB versus AD. [source] Simultaneous determination of the flavonoid aglycones diosmetin and hesperetin in human plasma and urine by a validated GC/MS method: in vivo metabolic reduction of diosmetin to hesperetinBIOMEDICAL CHROMATOGRAPHY, Issue 2 2009Marios Spanakis Abstract Diosmetin and hesperetin are the aglycones of the flavonoid glycosides diosmin and hesperidin which occur naturally in citrus fruit. A GC/MS method for the simultaneous determination of diosmetin and hesperetin in human plasma and urine has been developed and validated. The method was linear in the 2,300 ng/mL concentration range for both diosmetin and hesperetin in plasma and urine (r >0.999). The precision of the method was better than 6.01 and 7.16% for diosmetin and hesperetin, respectively, and the accuracy was 96.76,100.40% and 95.00,105.50% for diosmetin and hesperetin, respectively. The lower limit of quantitation was found to be 2 ng/mL for both analytes in plasma and urine. Recovery of diosmetin, hesperetin and internal standard naringenin was greater than 82.5%. The method has been applied for the determination of diosmetin and hesperetin in plasma and urine samples obtained from a healthy male subject following a single oral 1000 mg dose of the flavonoid glycoside diosmin. The presence of hesperetin in plasma and urine samples indicates the metabolic reduction of diosmetin to its flavanone analogue hesperetin through reduction of the 2,3 double bond of the C-ring by the enzymes of bacteria of the intestinal microflora. Copyright © 2008 John Wiley & Sons, Ltd. [source] Alzheimer's disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmationANNALS OF NEUROLOGY, Issue 3 2001Satoshi Minoshima MD Seeking antemortem markers to distinguish Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), we examined brain glucose metabolism of DLB and AD. Eleven DLB patients (7 Lewy body variant of AD [LBVAD] and 4 pure diffuse Lewy body disease [DLBD]) who had antemortem position emission tomography imaging and autopsy confirmation were compared to 10 autopsy-confirmed pure AD patients. In addition, 53 patients with clinically-diagnosed probable AD, 13 of whom later fulfilled clinical diagnoses of DLB, were examined. Autopsy-confirmed AD and DLB patients showed significant metabolic reductions involving parietotemporal association, posterior cingulate, and frontal association cortices. Only DLB patients showed significant metabolic reductions in the occipital cortex, particularly in the primary visual cortex (LBVAD ,23% and DLBD ,29% vs AD ,8%), which distinguished DLB versus AD with 90% sensitivity and 80% specificity. Multivariate analysis revealed that occipital metabolic changes in DLB were independent from those in the adjacent parietotemporal cortices. Analysis of clinically-diagnosed probable AD patients showed a significantly higher frequency of primary visual metabolic reduction among patients who fulfilled later clinical criteria for DLB. In these patients, occipital hypometabolism preceded some clinical features of DLB. Occipital hypometabolism is a potential antemortem marker to distinguish DLB versus AD. [source] |