Home About us Contact | |||
Metabolic Phenotypes (metabolic + phenotype)
Selected AbstractsThe PAH gene, phenylketonuria, and a paradigm shift,,HUMAN MUTATION, Issue 9 2007Charles R. Scriver Abstract "Inborn errors of metabolism," first recognized 100 years ago by Garrod, were seen as transforming evidence for chemical and biological individuality. Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype, was identified in 1934 by Asbjörn Fölling. It is a disease with impaired postnatal cognitive development resulting from a neurotoxic effect of hyperphenylalaninemia (HPA). Its metabolic phenotype is accountable to multifactorial origins both in nurture, where the normal nutritional experience introduces L-phenylalanine, and in nature, where mutations (>500 alleles) occur in the phenylalanine hydroxylase gene (PAH) on chromosome 12q23.2 encoding the L-phenylalanine hydroxylase enzyme (EC 1.14.16.1). The PAH enzyme converts phenylalanine to tyrosine in the presence of molecular oxygen and catalytic amounts of tetrahydrobiopterin (BH4), its nonprotein cofactor. PKU is among the first of the human genetic diseases to enter, through newborn screening, the domain of public health, and to show a treatment effect. This effect caused a paradigm shift in attitudes about genetic disease. The PKU story contains many messages, including: a framework on which to appreciate the complexity of PKU in which phenotype reflects both locus-specific and genomic components; what the human PAH gene tells us about human population genetics and evolution of modern humans; and how our interest in PKU is served by a locus-specific mutation database (http://www.pahdb.mcgill.ca; last accessed 20 March 2007). The individual Mendelian PKU phenotype has no "simple" or single explanation; every patient has her/his own complex PKU phenotype and will be treated accordingly. Knowledge about PKU reveals genomic components of both disease and health. Hum Mutat 28(9), 831,845, 2007. Published 2007 Wiley-Liss, Inc. [source] A simple and rapid high-performance liquid chromatographic (HPLC) method for 5-fluorouracil (5-FU) assay in plasma and possible detection of patients with impaired dihydropyrimidine dehydrogenase (DPD) activityJOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 4 2004J. Ciccolini PharmD PhD Summary Background:, Dihydropyrimidine dehydrogenase (DPD) gene polymorphism may lead to severe toxicity with 5-fluorouracil (5-FU), a major anticancer drug extensively used in clinical oncology. Drug monitoring combined with early detection of patients at risk would enable timely dose adaptation so as to maintain drug concentrations within a therapeutic window. However, the best method to identify such patients remains to be determined. Objective:, The aim of this study was to develop a rapid and simple high-performance liquid chromatographic (HPLC) method for estimating uracil/dihydrouracil (U/UH2) ratio in plasma, as an index of DPD status, and for assaying 5-FU as part of drug level monitoring. Method:, Assay of 5-FU, and U/UH2 detection were performed on a HPLC system equipped with UV detector. Analytes were separated at room temperature using a 5 ,m particles, 25 cm RP-18 X-Terra column. The mobile-phase consisted of a KH2PO4 salt solution (0·05 m) + 0·1% triethylamine (TEA) pumped at 0·4 mL/min. Detection of 5-FU and 5-bromouracil were performed at 254 nm; U and UH2 elution was monitored at 210 nm. Results:, The method was sensitive and specific for assaying 5-FU within the 5,500 ng/mL concentration range, which covers exposure levels currently met in clinical practice. The method was simple, and relatively cheap, and rapid, with an analytical run time of about 30 min. Data from a patient with 5-FU toxicity suggest that the method was capable of identifying DPD metabolic phenotype in cancer patients, based on measurement of plasma U/UH2 ratio. Conclusion:, The method described should be suitable both for detecting patients at high risk of 5-FU toxicity, and for drug level monitoring during chemotherapy. [source] Integrative functional genomics of salt acclimatization in the model legume Lotus japonicusTHE PLANT JOURNAL, Issue 6 2008Diego H. Sanchez Summary The model legume Lotus japonicus was subjected to non-lethal long-term salinity and profiled at the ionomic, transcriptomic and metabolomic levels. Two experimental designs with various stress doses were tested: a gradual step acclimatization and an initial acclimatization approach. Ionomic profiling by inductively coupled plasma/atomic emission spectrometry (ICP-AES) revealed salt stress-induced reductions in potassium, phosphorus, sulphur, zinc and molybdenum. Microarray profiling using the Lotus Genechip® allowed the identification of 912 probesets that were differentially expressed under the acclimatization regimes. Gas chromatography/mass spectrometry-based metabolite profiling identified 147 differentially accumulated soluble metabolites, indicating a change in metabolic phenotype upon salt acclimatization. Metabolic changes were characterized by a general increase in the steady-state levels of many amino acids, sugars and polyols, with a concurrent decrease in most organic acids. Transcript and metabolite changes exhibited a stress dose-dependent response within the range of NaCl concentrations used, although threshold and plateau behaviours were also observed. The combined observations suggest a successive and increasingly global requirement for the reprogramming of gene expression and metabolic pathways to maintain ionic and osmotic homeostasis. A simple qualitative model is proposed to explain the systems behaviour of plants during salt acclimatization. [source] Revealing metabolic phenotypes in plants: inputs from NMR analysisBIOLOGICAL REVIEWS, Issue 1 2005R. G. Ratcliffe ABSTRACT Assessing the performance of the plant metabolic network, with its varied biosynthetic capacity and its characteristic subcellular compartmentation, remains a considerable challenge. The complexity of the network is such that it is not yet possible to build large-scale predictive models of the fluxes it supports, whether on the basis of genomic and gene expression analysis or on the basis of more traditional measurements of metabolites and their interconversions. This limits the agronomic and biotechnological exploitation of plant metabolism, and it undermines the important objective of establishing a rational metabolic engineering strategy. Metabolic analysis is central to removing this obstacle and currently there is particular interest in harnessing high-throughput and/or large-scale analyses to the task of defining metabolic phenotypes. Nuclear magnetic resonance (NMR) spectroscopy contributes to this objective by providing a versatile suite of analytical techniques for the detection of metabolites and the fluxes between them. The principles that underpin the analysis of plant metabolism by NMR are described, including a discussion of the measurement options for the detection of metabolites in vivo and in vitro, and a description of the stable isotope labelling experiments that provide the basis for metabolic flux analysis. Despite a relatively low sensitivity, NMR is suitable for high-throughput system-wide analyses of the metabolome, providing methods for both metabolite fingerprinting and metabolite profiling, and in these areas NMR can contribute to the definition of plant metabolic phenotypes that are based on metabolic composition. NMR can also be used to investigate the operation of plant metabolic networks. Labelling experiments provide information on the operation of specific pathways within the network, and the quantitative analysis of steady-state labelling experiments leads to the definition of large-scale flux maps for heterotrophic carbon metabolism. These maps define multiple unidirectional fluxes between branch-points in the metabolic network, highlighting the existence of substrate cycles and discriminating in favourable cases between fluxes in the cytosol and plastid. Flux maps can be used to define a functionally relevant metabolic phenotype and the extensive application of such maps in microbial systems suggests that they could have important applications in characterising the genotypes produced by plant genetic engineering. [source] Mammary serine protease inhibitor inhibits epithelial growth factor-induced epithelial-mesenchymal transition of esophageal carcinoma cellsCANCER, Issue 1 2009Zhen Cai PhD Abstract BACKGROUND: By using proteomic technology, the authors previously observed the substantial down-regulation of mammary serine protease inhibitor (maspin) in esophageal squamous cell carcinoma and metastases. In the current study, they examined the effects of maspin re-expression in a maspin-null esophageal cancer cell line EC109 and also investigated the underlying mechanism. METHODS: A cell line with stable maspin expression was established. An epithelial growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) model was used to mimic some aspects of the metastatic process in vitro. The effects of maspin reintroduction on EGF-induced EMT and cell growth characteristics were evaluated. Comparative proteomic analysis of transfected cells versus parental cells was then performed to explore the potential mechanism. RESULTS: The introduction of maspin into EC109 cells was able to inhibit EGF-induced EMT and altered cell growth characteristics, including the serum dependence, proliferative response to EGF stimulation, and colony formation ability in soft agar, indicating a conversion from a malignant phenotype to a benign phenotype. Proteomic analysis revealed a significant down-regulation of a group of glycolytic enzymes in maspin-transfected cells. In addition, maspin-transfected cells expressed much lower levels of hypoxia-inducible factor 1, than parental cells or empty vector transfected cells. CONCLUSIONS: Maspin exhibited a metastasis-suppressive effect, which may be a consequence of the reversal of the malignant phenotype of EC109 cells. The switch of cellular metabolic phenotype to low glycolysis by the gain of maspin function may play a key role in the process. This finding provides additional evidence of the tumor metastasis-suppressive activity of maspin and may indicate a new direction for future studies of the mechanism of maspin. Cancer 2009. © 2008 American Cancer Society. [source] Genome-scale models of bacterial metabolism: reconstruction and applicationsFEMS MICROBIOLOGY REVIEWS, Issue 1 2009Maxime Durot Abstract Genome-scale metabolic models bridge the gap between genome-derived biochemical information and metabolic phenotypes in a principled manner, providing a solid interpretative framework for experimental data related to metabolic states, and enabling simple in silico experiments with whole-cell metabolism. Models have been reconstructed for almost 20 bacterial species, so far mainly through expert curation efforts integrating information from the literature with genome annotation. A wide variety of computational methods exploiting metabolic models have been developed and applied to bacteria, yielding valuable insights into bacterial metabolism and evolution, and providing a sound basis for computer-assisted design in metabolic engineering. Recent advances in computational systems biology and high-throughput experimental technologies pave the way for the systematic reconstruction of metabolic models from genomes of new species, and a corresponding expansion of the scope of their applications. In this review, we provide an introduction to the key ideas of metabolic modeling, survey the methods, and resources that enable model reconstruction and refinement, and chart applications to the investigation of global properties of metabolic systems, the interpretation of experimental results, and the re-engineering of their biochemical capabilities. [source] Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neuronsGLIA, Issue 10 2010Nader D. Halim Abstract Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH,). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorlyated PDH,. Dephosphorylation of astrocytic PDH, restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. © 2010 Wiley-Liss, Inc. [source] Metabolic phenotyping of mouse mutants in the German Mouse ClinicINTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 3 2006Ralf ELVERT Abstract The German Mouse Clinic was established as a phenotyping center to provide the scientific community with systematic standardized phenotyping of mouse models from various genetic backgrounds. We found metabolic phenotypes in nine out of 20 mutant lines screened in a primary screen. Based on these findings, the mutants were analyzed in secondary and tertiary screens. Mice of a sample mutant line, isolated from the ENU-screen at the National Research Center for Environment and Health in Munich, were found to have lower body weight, consume less food, but have higher ratios of metabolized energy per unit body weight compared with their wild-type littermates. Basal metabolic rate and heat production were simultaneously increased by 16,18%, whereas body fat content was reduced by 11,16%. The combination of various parameters of energy consumption, expenditure and energy storage illustrate the metabolic demands of the sample mutant mouse line and demonstrate the utility of the powerful phenotyping tool used at the German Mouse Clinic. [source] Development and validation of a ultra performance LC-ESI/MS method for analysis of metabolic phenotypes of healthy men in day and night urine samplesJOURNAL OF SEPARATION SCIENCE, JSS, Issue 16-17 2008Xijun Wang Abstract Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N -acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock. [source] Revealing metabolic phenotypes in plants: inputs from NMR analysisBIOLOGICAL REVIEWS, Issue 1 2005R. G. Ratcliffe ABSTRACT Assessing the performance of the plant metabolic network, with its varied biosynthetic capacity and its characteristic subcellular compartmentation, remains a considerable challenge. The complexity of the network is such that it is not yet possible to build large-scale predictive models of the fluxes it supports, whether on the basis of genomic and gene expression analysis or on the basis of more traditional measurements of metabolites and their interconversions. This limits the agronomic and biotechnological exploitation of plant metabolism, and it undermines the important objective of establishing a rational metabolic engineering strategy. Metabolic analysis is central to removing this obstacle and currently there is particular interest in harnessing high-throughput and/or large-scale analyses to the task of defining metabolic phenotypes. Nuclear magnetic resonance (NMR) spectroscopy contributes to this objective by providing a versatile suite of analytical techniques for the detection of metabolites and the fluxes between them. The principles that underpin the analysis of plant metabolism by NMR are described, including a discussion of the measurement options for the detection of metabolites in vivo and in vitro, and a description of the stable isotope labelling experiments that provide the basis for metabolic flux analysis. Despite a relatively low sensitivity, NMR is suitable for high-throughput system-wide analyses of the metabolome, providing methods for both metabolite fingerprinting and metabolite profiling, and in these areas NMR can contribute to the definition of plant metabolic phenotypes that are based on metabolic composition. NMR can also be used to investigate the operation of plant metabolic networks. Labelling experiments provide information on the operation of specific pathways within the network, and the quantitative analysis of steady-state labelling experiments leads to the definition of large-scale flux maps for heterotrophic carbon metabolism. These maps define multiple unidirectional fluxes between branch-points in the metabolic network, highlighting the existence of substrate cycles and discriminating in favourable cases between fluxes in the cytosol and plastid. Flux maps can be used to define a functionally relevant metabolic phenotype and the extensive application of such maps in microbial systems suggests that they could have important applications in characterising the genotypes produced by plant genetic engineering. [source] |