Metabolic Fuel (metabolic + fuel)

Distribution by Scientific Domains


Selected Abstracts


The regulation of muscle glycogen: the granule and its proteins

ACTA PHYSIOLOGICA, Issue 4 2010
T. E. Graham
Abstract Despite decades of studying muscle glycogen in many metabolic situations, surprisingly little is known regarding its regulation. Glycogen is a dynamic and vital metabolic fuel that has very limited energetic capacity. Thus its regulation is highly complex and multifaceted. The stores in muscle are not homogeneous and there appear to be various metabolic pools. Each granule is capable of independent regulation and fundamental aspects of the regulation appear to be associated with a complex set of proteins (some are enzymes and others serve scaffolding roles) that associate both with the granule and with each other in a dynamic fashion. The regulation includes altered phosphorylation status and often translocation as well. The understanding of the roles and the regulation of glycogenin, protein phosphatase 1, glycogen targeting proteins, laforin and malin are in their infancy. These various processes appear to be the mechanisms that give the glycogen granule precise, yet dynamic regulation. [source]


Point of View: Could glucose be a proaging factor?

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2008
Eva Kassi
Abstract There is an ever-increasing scientific interest for the interplay between cell's environment and the aging process. Although it is known that calorie restriction affects longevity, the exact molecular mechanisms through which nutrients influence various cell signalling/modulators of lifespan remain a largely unresolved issue. Among nutrients, glucose constitutes an evolutionarily stable, precious metabolic fuel, which is catabolized through glycolytic pathway providing energy in the form of ATP and consuming NAD. Accumulating evidence shows that among the important regulators of aging process are autophagy, sirtuin activity and oxidative stress. In light of recent work indicating that glucose availability decreases lifespan whilst impaired glucose metabolism extends life expectancy, the present article deals with the potential role of glucose in the aging process by regulating , directly through its metabolism or indirectly through insulin secretion , autophagy, sirtuins as well as other modulators of aging like oxidative stress and advanced glycation end-products (AGEs). [source]


Studies on the effects of lactate transport inhibition, pyruvate, glucose and glutamine on amino acid, lactate and glucose release from the ischemic rat cerebral cortex

JOURNAL OF NEUROCHEMISTRY, Issue 1 2001
J. W. Phillis
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with ,-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mm) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mm glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mm) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux. [source]


Leucine metabolism in regulation of insulin secretion from pancreatic beta cells

NUTRITION REVIEWS, Issue 5 2010
Jichun Yang
Leucine, a branched-chain amino acid that must be supplied in the daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic , cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet , cells via both mTOR-dependent and -independent pathways at physiological concentrations. Long-term treatment with leucine has been shown to improve insulin secretory dysfunction of human diabetic islets via upregulation of certain key metabolic genes. In vivo, leucine administration improves glycemic control in humans and rodents with type 2 diabetes. This review summarizes and discusses the recent findings regarding the effects of leucine metabolism on pancreatic ,-cell function. [source]


Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency

ANNALS OF NEUROLOGY, Issue 1 2010
Cigdem I. Akman MD
Objective Glucose transporter type 1 deficiency syndrome (Glut1-DS) is characterized clinically by acquired microcephaly, infantile-onset seizures, psychomotor retardation, choreoathetosis, dystonia, and ataxia. The laboratory signature is hypoglycorrhachia. The 5-hour oral glucose tolerance test (OGTT) was performed to assess cerebral function and systemic carbohydrate homeostasis during acute hyperglycemia, in the knowledge that GLUT1 is constitutively expressed ubiquitously and upregulated in the brain. Methods Thirteen Glut1-DS patients completed a 5-hour OGTT. Six patients had prolonged electroencephalographic (EEG)/video monitoring, 10 patients had plasma glucose and serum insulin measurements, and 5 patients had repeated measures of attention, memory, fine motor coordination, and well-being. All patients had a full neuropsychological battery prior to OGTT. Results The glycemic profile and insulin response during the OGTT were normal. Following the glucose load, transient improvement of clinical seizures and EEG findings were observed, with the most significant improvement beginning within the first 30 minutes and continuing for 180 minutes. Thereafter, clinical seizures returned, and EEG findings worsened. Additionally, transient improvement in attention, fine motor coordination, and reported well-being were observed without any change in memory performance. Interpretation This study documents transient neurological improvement in Glut1-DS patients following acute hyperglycemia, associated with improved fine motor coordination and attention. Also, systemic carbohydrate homeostasis was normal, despite GLUT1 haploinsufficiency, confirming the specific role of GLUT1 as the transporter of metabolic fuel across the blood-brain barrier. The transient improvement in brain function underscores the rate-limiting role of glucose transport and the critical minute-to-minute dependence of cerebral function on fuel availability for energy metabolism. ANN NEUROL 2010;67:31,40 [source]