Home About us Contact | |||
Metabolic Analysis (metabolic + analysis)
Selected AbstractsDisruption of Maternal Behavior by Alcohol Intoxication in the Lactating Rat: A Behavioral and Metabolic AnalysisALCOHOLISM, Issue 8 2002Marta Yanina Pepino Background Preweanling rats exhibit clear behavioral signs of distress after interacting with an alcohol-intoxicated dam. Interestingly, behavioral reactivity of infants to the experience of alcohol in the nursing context decreases as a function of repeated alcohol administrations to the mother. In this study, maternal activities were examined when dams were exposed to repeated administrations of a subnarcoleptic alcohol dose. Maternal changes in alcohol metabolism were also analyzed as a function of repeated exposures to the drug. Methods During postpartum days 3, 5, 7, 9, 11, and 13, nursing dams received an intragastric administration of either 2.5 g/kg of alcohol or water. Maternal behaviors were evaluated (experiment 1). Blood alcohol levels (BALs) of the dams were determined on postpartum day 16 after all mothers received either an intragastric (experiment 2) or an intraperitoneal (experiment 3) dose of alcohol. The doses used (2.5 g/kg intragastrically and 1.5 g/kg intraperitoneally) were chosen because they promote similar peak BALs in dams naive to alcohol. Results Maternal behaviors were strongly affected by the state of intoxication. Nevertheless, these disruptions clearly subsided with progression of alcohol-related experiences (experiment 1). Chromatographic analysis of alcohol metabolism indicated the development of tolerance in dams that had prior experience with alcohol (experiment 2). Changes in BALs as a function of prior experience with alcohol seemed related to first-pass alcohol metabolism rather than hepatic oxidative processes of the drug (experiments 2 and 3). Conclusions When the dam first experiences a moderate state of alcohol intoxication, maternal behaviors are uniformly disrupted. Subsequent exposures to alcohol lead to maternal metabolic tolerance. In conjunction with previous studies, these data indicate that infantile reactivity to alcohol is dependent on how the members of the dam/pup dyad express or perceive ethanol's postabsorptive effects. [source] Sugar Metabolic Analysis of Suspensions of Plant Cells Using an FT-IR/ATR MethodBIOTECHNOLOGY PROGRESS, Issue 3 2001Atsushi Hashimoto A simple, rapid and accurate evaluation of the sugar uptake rate of suspended plant cells from culture media was developed with the predicted sugar contents measured by mid-infrared spectroscopy using a Fourier transform infrared (FT-IR) spectrometer equipped with an attenuated total reflectance (ATR) accessory. We performed plant cell cultivation with Nicotiana tabacum cv. Bright Yellow No.2 (TBY-2) in culture media, which had various combinations of glucose, fructose and sucrose concentrations at the initial stage, and measured simultaneously each sugar content in the medium by the FT-IR/ATR method. By applying a logistic function to the predicted sugar contents and cell density in the medium during cultivation, the specific sugar uptake rates by the suspended TBY-2 cells were easily and continuously obtained. Thus the kinetic sugar uptake phenomena by the TBY-2 cells were well confirmed overall using the developed method. Additionally it was found that the fraction of sucrose of the initial total sugar content might kinetically affect the sugar uptake process and cell growth. Also, the relationship between the nondimensional cell density and sucrose content could be classified into three groups on the basis of the initial fraction of sucrose. [source] Revealing metabolic phenotypes in plants: inputs from NMR analysisBIOLOGICAL REVIEWS, Issue 1 2005R. G. Ratcliffe ABSTRACT Assessing the performance of the plant metabolic network, with its varied biosynthetic capacity and its characteristic subcellular compartmentation, remains a considerable challenge. The complexity of the network is such that it is not yet possible to build large-scale predictive models of the fluxes it supports, whether on the basis of genomic and gene expression analysis or on the basis of more traditional measurements of metabolites and their interconversions. This limits the agronomic and biotechnological exploitation of plant metabolism, and it undermines the important objective of establishing a rational metabolic engineering strategy. Metabolic analysis is central to removing this obstacle and currently there is particular interest in harnessing high-throughput and/or large-scale analyses to the task of defining metabolic phenotypes. Nuclear magnetic resonance (NMR) spectroscopy contributes to this objective by providing a versatile suite of analytical techniques for the detection of metabolites and the fluxes between them. The principles that underpin the analysis of plant metabolism by NMR are described, including a discussion of the measurement options for the detection of metabolites in vivo and in vitro, and a description of the stable isotope labelling experiments that provide the basis for metabolic flux analysis. Despite a relatively low sensitivity, NMR is suitable for high-throughput system-wide analyses of the metabolome, providing methods for both metabolite fingerprinting and metabolite profiling, and in these areas NMR can contribute to the definition of plant metabolic phenotypes that are based on metabolic composition. NMR can also be used to investigate the operation of plant metabolic networks. Labelling experiments provide information on the operation of specific pathways within the network, and the quantitative analysis of steady-state labelling experiments leads to the definition of large-scale flux maps for heterotrophic carbon metabolism. These maps define multiple unidirectional fluxes between branch-points in the metabolic network, highlighting the existence of substrate cycles and discriminating in favourable cases between fluxes in the cytosol and plastid. Flux maps can be used to define a functionally relevant metabolic phenotype and the extensive application of such maps in microbial systems suggests that they could have important applications in characterising the genotypes produced by plant genetic engineering. [source] Use of the 1-mm micro-probe for metabolic analysis on small volume biological samplesJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Natalie J. Serkova Abstract Endogenous metabolites are promising diagnostic end-points in cancer research. Clinical application of high-resolution NMR spectroscopy is often limited by extremely low volumes of human specimens. In the present study, the use of the Bruker 1-mm high-resolution TXI micro-probe was evaluated in the elucidation of metabolic profiles for three different clinical applications with limited sample sizes (body fluids, isolated cells and tissue biopsies). Sample preparation and 1H-NMR metabolite quantification protocols were optimized for following oncology-oriented applications: (i) to validate the absolute concentrations of citrate and spermine in human expressed prostatic specimens (EPS volumes 5 to 10 ,l: prostate cancer application); (ii) to establish the metabolic profile of isolated human lymphocytes (total cell count 4 = 106: chronic myelogenous leukaemia application); (iii) to assess the metabolic composition of human head-and-neck cancers from mouse xenografts (biopsy weights 20 to 70 mg: anti-cancer treatment application). In this study, the use of the Bruker 1-mm micro-probe provides a convenient way to measure and quantify endogenous metabolic profiles of samples with a very low volume/weight/cell count. [source] A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch fillingPLANT BIOTECHNOLOGY JOURNAL, Issue 9 2008Jean Louis Prioul Summary The maize endosperm transcriptome was investigated through cDNA libraries developed at three characteristic stages: (i) lag phase [10 days after pollination (DAP)]; (ii) beginning of storage (14 DAP); and (iii) maximum starch accumulation rate (21 DAP). Expressed sequence tags for 711, 757 and 384 relevant clones, respectively, were obtained and checked manually. The proportion of sequences with no clear function decreased from 35% to 20%, and a large increase in storage protein sequences (i.e. 5% to 38%) was observed from stages (i) to (iii). The remaining major categories included metabolism (11%,13%), transcription,RNA processing,protein synthesis (13%,20%), protein destination (5%,9%), cellular communication (3%,9%) and cell rescue,defence (4%). Good agreement was generally found between category rank in the 10-DAP transcriptome and the recently reported 14-DAP proteome, except that kinases and proteins for RNA processing were not detected in the latter. In the metabolism category, the respiratory pathway transcripts represented the largest proportion (25%,37%), and showed a shift in favour of glycolysis at 21 DAP. At this stage, amino acid metabolism increased to 17%, whereas starch metabolism surprisingly decreased to 7%. A second experiment focused on carbohydrate metabolism by comparing gene expression at three levels (transcripts, proteins and enzyme activities) in relation to substrate or product from 10 to 40 DAP. Here, two distinct patterns were observed: invertases and hexoses were predominant at the beginning, whereas enzyme patterns in the starch pathway, at the three levels, anticipated and paralleled starch accumulation, suggesting that, in most cases, transcriptional control is responsible for the regulation of starch biosynthesis. [source] In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survivalBIOTECHNOLOGY JOURNAL, Issue 7 2010Seung Bum Sohn Abstract Genome-scale metabolic models have been appearing with increasing frequency and have been employed in a wide range of biotechnological applications as well as in biological studies. With the metabolic model as a platform, engineering strategies have become more systematic and focused, unlike the random shotgun approach used in the past. Here we present the genome-scale metabolic model of the versatile Gram-negative bacterium Pseudomonas putida, which has gained widespread interest for various biotechnological applications. With the construction of the genome-scale metabolic model of P. putida KT2440, PpuMBEL1071, we investigated various characteristics of P. putida, such as its capacity for synthesizing polyhydroxyalkanoates (PHA) and degrading aromatics. Although P. putida has been characterized as a strict aerobic bacterium, the physiological characteristics required to achieve anaerobic survival were investigated. Through analysis of PpuMBEL1071, extended survival of P. putida under anaerobic stress was achieved by introducing the ackA gene from Pseudomonas aeruginosa and Escherichia coli. [source] |