Memory Acquisition (memory + acquisition)

Distribution by Scientific Domains


Selected Abstracts


Maternal memory in adult, nulliparous rats: Effects of testing interval on the retention of maternal behavior

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 1 2005
Robert S. Bridges
Abstract The retention of maternal behavior (i.e., maternal memory) was measured in adult, nulliparous rats induced to respond maternally by continuous exposure to foster pups. Specifically, the effects of the interval duration between the initial induction and the reinduction of maternal behavior were determined. Intact virgin rats were first exposed to foster young to induce maternal behavior. During the initial induction phase, females were required to be fully maternal on 2 consecutive test days. Animals were then assigned to one of three interval groups (10, 20, or 40 days). After being isolated from rat pups for these designated periods, females in each group were tested again for their latencies to induce maternal behavior. Whereas the initial median latencies to display full maternal behavior ranged from 4.5 to 5 days for each group, upon retesting, median latencies for each group declined to 1 to 4 days. The greatest reduction in latency was present in the 10-day group (80%), and the smallest reduction was detected in the 40-day group (20%). A significant negative linear correlation was found between test interval and percentage reduction in behavioral latency. Based upon this relationship and under these test conditions, "maternal memory" in the adult, nulliparous rat would be expected to be nondetectable after about an interval of 50 days between tests. The pattern of maternal memory acquisition and loss appears similar to that reported in parous animals. The present study highlights similarities and possible differences underlying the establishment of the retention of maternal behavior (i.e., maternal memory). © 2004 Wiley Periodicals, Inc. Dev Psychobiol 46: 13,18, 2005. [source]


The brain angiotensin IV/AT4 receptor system as a new target for the treatment of Alzheimer's disease

DRUG DEVELOPMENT RESEARCH, Issue 7 2009
John W. Wright
Abstract The brain renin-angiotensin system (RAS) regulates several physiologies including blood pressure, body sodium and water balance, cyclicity of reproductive hormones and related sexual behaviors, and the release of pituitary gland hormones. These physiologies are under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AngII/AT2 receptor subtype system is expressed during fetal development and is less abundant in the adult. This system appears to oppose growth responses facilitated by activation of the AT1 receptor. There is a growing list of nontraditional physiologies mediated by the most recently discovered angiotensin IV (AngIV)/AT4 receptor subtype system that include the regulation of blood flow, modulation of exploratory behaviors, involvement in stress responses and seizure, and a role in learning and memory acquisition. There is evidence to support an inhibitory influence by AngII, and a facilitory role by AngIV, on neuronal firing rate, long-term potentiation, and associative and spatial learning and memory. These findings suggest an important role for the RAS, and the AT4 receptor in particular, in normal cognitive processing and provide the stimulus for developing drugs that penetrate the blood-brain barrier to interact with this brain receptor in the treatment of dysfunctional memory. Drug Dev Res 70: 472,480, 2009. © 2009 Wiley-Liss, Inc. [source]


COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivo

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2008
T. R. Cowley
Abstract The objectives of this research were to investigate the role played by the enzyme cyclooxygenase (COX) in learning and memory, synaptic plasticity and synaptic transmission in the rat brain in vivo. Male Wistar rats were treated with isoform-selective inhibitors for COX-1 and COX-2, either chronically and tested in the watermaze or acutely before electrophysiological recordings were made. We found a significant impairment in acquisition of the watermaze with inhibition of COX-2. Furthermore, we found COX-2 but not COX-1 inhibition significantly blocked long-term potentiation (LTP) induction but had no effect on already established LTP. Moreover, exogenous replacement of the main metabolite of COX-2 activity, PGE2, was sufficient to restore LTP induction and for normal downstream signalling to ensue, namely extracellular signalling-regulated kinase (ERK)-phosphorylation and c-FOS expression. We conclude that endogenous basal levels of PGE2 resulting from COX-2 but not COX-1 activity are necessary for synaptic plasticity and memory acquisition. [source]


Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005
Wei-Lin Chien
Abstract Memory is one of the most fundamental mental processes, and various approaches have been used to understand the mechanisms underlying this process. Nitric oxide (NO), cGMP and protein kinase G (PKG) are involved in the modulation of synaptic plasticity in various brain regions. YC-1, which is a benzylindazole derivative, greatly potentiated the response of soluble guanylate cyclase to NO (up to several hundreds fold). We have previously shown that YC-1 markedly enhances long-term potentiation in hippocampal and amygdala slices via NO-cGMP-PKG-dependent pathway. We here further investigated whether YC-1 promotes learning behaviour in Morris water maze and avoidance tests. It was found that YC-1 shortened the escape latency in the task of water maze, increased and decreased the retention scores in passive and active avoidance task, respectively. Administration of YC-1 30 min after foot-shock stimulation did not significantly affect retention scores in response to passive avoidance test. Administration of scopolamine, a muscarinic antagonist, markedly impaired the memory acquisition. Pretreatment of YC-1 inhibited the scopolamine-induced learning deficit. The enhancement of learning behaviour by YC-1 was antagonized by intracerebroventricular injection of NOS inhibitor L-NAME and PKG inhibitors of KT5823 and Rp-8-Br-PET-cGMPS, indicating that NO-cGMP-PKG pathway is also involved in the learning enhancement action of YC-1. YC-1 is thus a good drug candidate for the improvement of learning and memory. [source]


Sequestration of serum response factor in the hippocampus impairs long-term spatial memory

JOURNAL OF NEUROCHEMISTRY, Issue 2 2005
Pramod K. Dash
Abstract The formation of long-term memory has been shown to require protein kinase-mediated gene expression. One such kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), can lead to the phosphorylation of serum response factor (SRF) and Elk-1, enhancing the expression of target genes. However, a direct involvement of these transcription factors in memory storage has not been demonstrated. We have employed an oligonucleotide decoy technique to interrogate SRF and Elk-1. Previously, it has been shown that intra-amygdalal infusion of small double-stranded decoy oligonucleotides for nuclear factor-kappaB (NFkappaB) can impair long-term memory for fear-potentiated startle. Using this approach, we found that intra-hippocampal infusion of NFkappaB decoy oligonucleotides also impairs long-term spatial memory, consistent with a role for this factor in long-term memory storage. Decoy oligonucleotides containing the binding site for SRF, as confirmed by shift-western, did not influence memory acquisition but impaired long-term spatial memory. Analysis of search behavior during the transfer test revealed deficits consistent with a loss of precise platform location information. In contrast, oligonucleotides with a binding site for either Elk-1 or another target of ERK activity, SMAD3/SMAD4, did not interfere with memory formation or storage. These findings suggest that SRF-mediated gene expression is required for long-term spatial memory. [source]


Fast Effects of Glucocorticoids on Memory-Related Network Oscillations in the Mouse Hippocampus

JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2008
E. K. Weiss
Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 ,m corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 ,m, corticosterone increased this frequency, whereas maximal (10 ,m) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones. [source]