Home About us Contact | |||
Applied Perspective (applied + perspective)
Selected AbstractsSeasonality and the dynamics of infectious diseasesECOLOGY LETTERS, Issue 4 2006Sonia Altizer Abstract Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host,pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite,host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions. [source] Debt Stabilizing Fiscal RulesJOURNAL OF PUBLIC ECONOMIC THEORY, Issue 5 2010PHILIPPE MICHEL Unstable government debt dynamics can typically be stabilized around a certain target level of debt by adjustments in various fiscal instruments, like government spending, transfers, or taxes. This paper investigates properties of debt stabilizing rules which link the needed budgetary adjustments to the state of the economy. The paper establishes that the magnitude of the target level of long-run debt is a key determinant of whether it is possible to find a rule of this type that can be implemented under all available fiscal instruments. Specifically, considering linear feedback rules, the paper demonstrates that there may well exist a critical target level of debt beyond which this is no longer possible. From an applied perspective, this finding is of particular relevance in the context of a monetary union with decentralized fiscal policies. Depending on the target level of debt, there might be a conflict between a common fiscal framework that tracks deficit developments as a function of the state of the economy and the unrestricted choice of fiscal policy instruments at the national level. [source] Single- or multistage regulation in complex life cycles: does it make a difference?OIKOS, Issue 2 2000Barbara Hellriegel Data on the different stages of complex life cycles are often rather unbalanced, especially those concerning the effects of density. How does this affect our understanding of a species' population dynamics? Two discrete three-stage models with overlapping generations and delayed maturation are constructed to address this question. They assume that survival or emigration in any life stage and/or reproduction can be density dependent. A typical pond-breeding amphibian species with a well-studied larval stage serves as an example. Numerical results show that the population dynamics resulting from density dependence at a single (e.g. the larval) stage can be decisively and unpredictably modified by density dependence in additional stages. Superposition of density-dependent processes could thus be one reason for the difficulties in identifying density dependence in the field. Moreover, in a simulated source-refuge system with habitat-specific density-dependent dispersal of juveniles density dependence in multiple stages can stabilize or destabilize the dynamics and produce misleading age structures. From an applied perspective this model shows that excluding multistage regulation prematurely clearly affects our ability to predict consequences of human impacts. [source] Fetal origins of developmental plasticity: Are fetal cues reliable predictors of future nutritional environments?AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2005Christopher W. Kuzawa Evidence that fetal nutrition triggers permanent adjustments in a wide range of systems and health outcomes is stimulating interest in the evolutionary significance of these responses. This review evaluates the postnatal adaptive significance of fetal developmental plasticity from the perspective of life history theory and evolutionary models of energy partitioning. Birthweight is positively related to multiple metabolically costly postnatal functions, suggesting that the fetus has the capacity to distribute the burden of energy insufficiency when faced with a nutritionally challenging environment. Lowering total requirements may reduce the risk of negative energy balance, which disproportionately impacts functions that are not essential for survival but that are crucial for reproductive success. The long-term benefit of these metabolic adjustments is contingent upon the fetus having access to a cue that is predictive of its future nutritional environment, a problem complicated in a long-lived species by short-term ecologic fluctuations like seasonality. Evidence is reviewed suggesting that the flow of nutrients reaching the fetus provides an integrated signal of nutrition as experienced by recent matrilineal ancestors, which effectively limits the responsiveness to short-term ecologic fluctuations during any given pregnancy. This capacity for fetal nutrition to minimize the growth response to transient ecologic fluctuations is defined here as intergenerational "phenotypic inertia," and is hypothesized to allow the fetus to cut through the "noise" of seasonal or other stochastic influences to read the "signal" of longer-term ecologic trends. As a mode of adaptation, phenotypic inertia may help the organism cope with ecologic trends too gradual to be tracked by conventional developmental plasticity, but too rapid to be tracked by natural selection. From an applied perspective, if a trait like fetal growth is designed to minimize the effects of short-term fluctuations by integrating information across generations, public health interventions may be most effective if focused not on the individual but on the matriline. Am. J. Hum. Biol. 17:5,21, 2005. © 2004 Wiley-Liss, Inc. [source] |