Medium Theory (medium + theory)

Distribution by Scientific Domains

Kinds of Medium Theory

  • effective medium theory


  • Selected Abstracts


    Macro,micro analysis method for wave propagation in stochastic media

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2006
    T. Ichimura
    Abstract This paper presents a new analysis method, called macro,micro analysis method (MMAM) for numerical simulation of wave propagation in stochastic media, which could be used to predict distribution of earthquake strong motion with high accuracy and spatial resolution. This MMAM takes advantage of the bounding medium theory (BMT) and the singular perturbation expansion (SPE). BMT can resolve uncertainty of soil and crust structures by obtaining optimistic and pessimistic estimates of expected strong motion distribution. SPE leads to efficient multi-scale analysis for reducing a huge amount of computation. The MMAM solution is given as the sum of waves of low resolution covering a whole city and waves of high resolution for each city portion. This paper presents BMT and SPE along with the formulation of MMAM for wave propagation in three-dimensional elastic media. Application examples are presented to verify the validity of the MMAM and demonstrate potential usefulness of this approach. In a companion paper (Earthquake Engng. Struct. Dyn., this issue) application examples of earthquake strong motion prediction are also presented. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    The influence of fluid-sensitive dispersion and attenuation on AVO analysis

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006
    Mark Chapman
    SUMMARY Analysis of seismic data suggests that hydrocarbon deposits are often associated with higher than usual values of attenuation, but this is generally ignored during amplitude-versus-offset (AVO) analysis. The effect can be modelled with equivalent medium theory based on the squirt flow concept, but the excess attenuation is associated with strong velocity dispersion. Consequently, when we study reflections from the interface between such an equivalent medium and an elastic overburden we find that the reflection coefficient varies with frequency. The impact of this variation depends on the AVO behaviour at the interface; class I reflections tend to be shifted to higher frequency while class III reflections have their lower frequencies amplified. We calculate synthetic seismograms for typical models using the reflectivity method for materials with frequency dependent velocities and attenuations, and find that these effects are predicted to be detectable on stacked data. Two field data sets show frequency anomalies similar to those predicted by the analysis, and we suggest that our modelling provides a plausible explanation of the observations. [source]


    Vertically fractured transversely isotropic media: dimensionality and deconstruction

    GEOPHYSICAL PROSPECTING, Issue 2 2009
    Michael A. Schoenberg
    ABSTRACT A vertically fractured transversely isotropic (VFTI) elastic medium is one in which any number of sets of vertical aligned fractures (each set has its normal lying in the horizontal x1, x2 -plane) pervade the medium and the sets of aligned fractures are the only features of the medium disturbing the axi-symmetry about the x3 -axis implying that in the absence of fractures, the background medium is transversely isotropic (TI). Under the assumptions of long wavelength equivalent medium theory, the compliance matrix of a fractured medium is the sum of the background medium's compliance matrix and a fracture compliance matrix. For sets of parallel rotationally symmetric fractures (on average), the fracture compliance matrix is dependent on 3 parameters , its normal and tangential compliance and its strike direction. When one fracture set is present, the medium is orthorhombic and the analysis is straightforward. When two (non-orthogonal) or more sets are present, the overall medium is in general elastically monoclinic; its compliance tensor components are subject to two equalities yielding an 11 parameter monoclinic medium. Constructing a monoclinic VFTI medium with n embedded vertical fracture sets, requires 5 TI parameters plus 3×n fracture set parameters. A deconstruction of such an 11 parameter monoclinic medium involves using its compliance tensor to find a background transversely isotropic medium and several sets of vertical fractures which, in the long wavelength limit, will behave exactly as the original 11 parameter monoclinic medium. A minimal deconstruction, would be to determine, from the 11 independent components, the transversely isotropic background (5 parameters) and two fracture sets (specified by 2 × 3 = 6 parameters). Two of the background TI medium's compliance matrix components are known immediately by inspection, leaving nine monoclinic components to be used in the minimal deconstruction of the VFTI medium. The use of the properties of a TI medium, which are linear relations on its compliance components, allows the deconstruction to be reduced to solving a pair of non-linear equations on the orientations of two fracture sets. A single root yielding a physically meaningful minimum deconstruction yields a unique minimal representation of the monoclinic medium as a VFTI medium. When no such root exists, deconstruction requires an additional fracture set and uniqueness is lost. The boundary between those monoclinic media that have a unique minimal representation and those that do not is yet to be determined. [source]


    BaTiO3,Epoxy Composites for Electronic Applications

    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 4 2010
    Leandro Ramajo
    A brief review related with dielectric properties of BaTiO3/epoxy composites is presented. The composites were obtained using the dipping technique. To facilitate the mixing and modify the filler surface, a solvent and a surface coupling agent were used. Intermediate and low concentrations of solvent and silane improved microstructure and dielectric properties of the composite material, whereas higher concentrations led to composites of poor quality. Finally, a model using finite elements was used, in order to predict the composite permittivity in relation to the percentage of filler. Model results were compared with the effective medium theory and experimental results. [source]


    Disordered lattice networks: general theory and simulations

    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 6 2005
    Stefano GiordanoArticle first published online: 16 NOV 200
    Abstract In this work we develop a theory for describing random networks of resistors of the most general topology. This approach generalizes and unifies several statistical theories available in literature. We consider an n-dimensional anisotropic random lattice where each node of the network is connected to a reference node through a given random resistor. This topology includes many structures of great interest both for theoretical and practical applications. For example, the one-dimensional systems correspond to random ladder networks, two-dimensional structures model films deposited on substrates and three-dimensional lattices describe random heterogeneous materials. Moreover, the theory is able to take into account the anisotropic percolation problem for two- and three-dimensional structures. The analytical results allow us to obtain the average behaviour of such networks, i.e. the electrical characterization of the corresponding physical systems. This effective medium theory is developed starting from the properties of the lattice Green's function of the network and from an ad hoc mean field procedure. An accurate analytical study of the related lattice Green's functions has been conducted obtaining many closed form results expressed in terms of elliptic integrals. All the theoretical results have been verified by means of numerical Monte-Carlo simulations obtaining a remarkably good agreement between numerical and theoretical values. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Continuous medium theory for nonequilibrium solvation: III.

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2005
    Solvation shift by monopole approximation, multipole expansion in spherical cavity
    Abstract According to the classical electrodynamics, a new and reasonable method about electrostatic energy decomposition of the solute-solvent system has been proposed in this work by introducing the concept of spring energy. This decomposition in equilibrium solvation gives the clear comprehension for different parts of total electrostatic free energy. Logically extending this cognition to nonequilibrium leads to the new formula of electrostatic free energy of nonequilibrium state. Furthermore, the general solvation shift for light absorption/emission has been reformulated and applied to the ideal sphere case with the monopole approximation and multipole expansion. Solvation shifts in vertical ionizations of atomic ions of some series of main group elements have been investigated with monopole approximation, and the variation tendency of the solvation shift versus atomic number has been discussed. Moreover, the solvation shift in photoionization of nitrate anion in glycol has been investigated by the multipole expansion method. © 2005 Wiley Periodicals, Inc. J Comput Chem 4: 399,409, 2005 [source]


    Controlling the flow of light with silicon nanostructures

    LASER PHYSICS LETTERS, Issue 2 2010
    W. Park
    Abstract Silicon is an important material for integrated photonics applications. High refractive index and transparency in the infrared region makes it an ideal platform to implement nanostructures for novel optical devices. We fabricated silicon photonic crystals and experimentally demonstrated negative refraction and self-collimation. We also used heterodyne near-field scanning optical microscope to directly visualize the anomalous wavefronts. When the periodicity is much smaller than wavelength, silicon photonic crystal can be described by the effective medium theory. By engineering effective refractive index with silicon nanorod size, we demonstrated an all-dielectric cloak structure which can hide objects in front of a highly reflecting plane. The work discussed in this review shows the powerful design flexibility and versatility of silicon nanostructures. (© 2010 by Astro Ltd., Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


    Far-infrared spectroscopy of HgMnTe,MnSe mixture

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 4 2006
    N. Rom
    Abstract Far-infrared reflectivity spectrum of Hg0.91Mn0.09Te-MnSe mixture, grown by Bridgman method, was measured in the 80,500 cm,1 range at room temperature. The investigated mixture consists of MnSe clusters randomly distributed in Hg0.91Mn0.09Te matrix. The analysis of the far-infrared spectrum was made by a fitting procedure. The Maxwell-Garnett effective medium theory is used for modeling the effective dielectric function, and by that way calculating both the electron and phonon response. There is a good agreement between the experimental results and the applied model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]