Home About us Contact | |||
Medium Model (medium + model)
Kinds of Medium Model Selected AbstractsReview modeling the free solution and gel electrophoresis of biopolymers: The bead array-effective medium modelBIOPOLYMERS, Issue 2-3 2007Stuart A. Allison Abstract Free solution and gel electrophoresis is an extremely useful tool in the separation of biopolymers. The complex nature of biopolymers, coupled with the usefulness of electrophoretic methods, has stimulated the development of theoretical modeling over the last 30 years. In this work, these developments are first reviewed with emphasis on Boundary Element and bead methodologies that enable the investigator to design realistic models of biopolymers. In the present work, the bead methodology is generalized to include the presence of a gel through the Effective Medium model. The biopolymer is represented as a bead array. A peptide, for example, made up of N amino acids is modeled as 2N beads. Duplex DNA is modeled as a discrete wormlike chain consisting of touching beads. The technical details of the method are placed in three Appendices. To illustrate the accuracy and effectiveness of the approach, two applications are considered. Model studies on both the free solution mobility of 73 peptides ranging in size from 2 to 42 amino acids, and the mobility of short duplex DNA in dilute agarose gels are discussed. © 2007 Wiley Periodicals, Inc. Biopolymers 87: 102,114, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Solute transport through a deforming porous mediumINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2002Glen P. Peters Abstract Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers. Copyright © 2002 John Wiley & Sons, Ltd. [source] Iterative ultrasonic signal and image deconvolution for estimation of the complex medium responseINTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 6 2005Zhiping Mu Abstract The ill-conditioned inverse problem of estimating ultrasonic medium responses by deconvolution of RF signals is investigated. The primary difference between the proposed method and others is that the medium response function is assumed to be complex-valued rather than restricted to being real-valued. Derived from the complex medium model, complex Wiener filtering is presented, and a Hilbert transform related limitation to inverse filtering type methods is discussed. We introduce a nonparametric iterative algorithm, the least squares method with point count regularization (LSPC). The algorithm is successfully applied to simulated and experimental data and demonstrates the capability of recovering both the real and imaginary parts of the medium response. The simulation results indicate that the LSPC method can outperform Wiener filters and improve the resolution of the ultrasound system by factors as high as 3.7. Experimental results using a single element transducer and a conventional medical ultrasound system with a linear array transducer show that despite the errors in pulse estimation and the noise in the RF signals, excellent results can be obtained, demonstrating the stability and robustness of the algorithm. © 2006 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 15, 266,277, 2005 [source] Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic CompositeJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001Kathleen R. McDonald Effects of matrix cracks and the attendant interface debonding and sliding on both the longitudinal and the transverse thermal diffusivities of a unidirectional Nicalon/MAS composite are investigated. The diffusivity measurements are made in situ during tensile testing using a phase-sensitive photothermal technique. The contribution to the longitudinal thermal resistance from each of the cracks is determined from the longitudinal diffusivity along with measurements of crack density. By combining the transverse measurements with the predictions of an effective medium model, the thermal conductance of the interface (characterized by a Biot number) is determined and found to decrease with increasing crack opening displacement, from an initial value of ,1 to ,0.3. This degradation is attributed to the deleterious effects of interface sliding on the thermal conductance. Corroborating evidence of degradation in the interface conductance is obtained from the inferred crack conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks. Additional notable features of the material behavior include: (i) reductions of ,20% in both the longitudinal and the transverse diffusivities at stresses near the ultimate strength, (ii) almost complete recovery of the longitudinal diffusivity following unloading, and (iii) essentially no change in the transverse diffusivity following unloading. The recovery of the longitudinal diffusivity is attributed to closure of the matrix cracks. By contrast, the degradation in the interface conductance is permanent, as manifest in the lack of recovery of the transverse diffusivity. [source] A general model for porous medium flow in squeezing film situationsLUBRICATION SCIENCE, Issue 2 2010Mohamed Nabhani Abstract The present paper deals with a numerical investigation of the hydrodynamic lubrication of a porous squeeze film between two circular discs. To this purpose, the thin film (reduced) Navier Stokes equations and a generalised porous medium model are solved. The numerical results show that the effect of the porous disc is to reduce the lubricating properties of the fluid film. This effect is increased during the squeezing action. In addition, it is shown that the film pressure, the load-carrying capacity and the velocity field based only on the Darcy model are predicted higher than those obtained from the generalised porous medium model. Copyright © 2009 John Wiley & Sons, Ltd. [source] Effect of form anisotropy of silicon nanocrystals on birefringence and dichroism in porous siliconPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2007A. I. Efimova Abstract Artificial anisotropic optical media based on nanostructured silicon formed by electrochemical porosifying of Si substrates are investigated. Strong birefringence and dichroism of surface silicon-hydrogen bonds vibrations are found in the infrared spectral range. A comprehensive analysis of the absorption bands corresponding to the deformation and stretching modes is performed. The experimental results are discussed in terms of an effective medium model, taking into account the morphological anisotropy of Si nanocrystals in porous Si layers. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] The birefringence level of anisotropically nanostructured siliconPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2007J. Diener Abstract We present a detailed study of the anisotropic optical properties of mesoporous silicon layers prepared from substrates having different doping levels under various preparation conditions. It is demonstrated that the morphology of the layers strongly depends on the preparation conditions. The experimental data are explained in the framework of an effective medium model which takes into account different morphologies of the layers. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crownsPLANT CELL & ENVIRONMENT, Issue 4 2007B. E. EWERS ABSTRACT In a Pinus taeda L. (loblolly pine) plantation, we investigated whether the response to vapour pressure deficit (D) of canopy average stomatal conductance (GS) calculated from sap flux measured in upper and lower branches and main stems follows a hydraulically modelled response based on homeostasis of minimum leaf water potential (,L). We tested our approach over a twofold range of leaf area index (L; 2,4 m2 m,2) created by irrigation, fertilization, and a combination of irrigation and fertilization relative to untreated control. We found that GS scaled well from leaf-level porometery [porometry-based stomatal conductance (gs)] to branch-estimated and main stem-estimated GS. The scaling from branch- to main stem-estimated GS required using a 45 min moving average window to extract the diurnal signal from the large high-frequency variation, and utilized a light attenuation model to weigh the contribution of upper and lower branch-estimated GS. Our analysis further indicated that, regardless of L, lower branch-estimated GS represented most of the main stem-estimated GS in this stand. We quantified the variability in both upper and lower branch-estimated GS by calculating the SD of the residuals from a moving average smoothed diurnal. A light model, which incorporated penumbral effects on vertical distribution of direct light, was employed to estimate the variability in light intensity at each canopy level in order to explain the increasing SD of both upper and lower branch-estimated GS with light. The results from the light model showed that the upper limit of the variability in individual branch-estimated GS could be attributed to incoming light, but not the variation below that upper limit. A porous medium model of water flow in trees produced a pattern of variation below the upper limit that was consistent with the observed variability in branch-estimated GS. Our results indicated that stems acted to buffer leaf- and branch-level variation and might transmit a less-variable water potential signal to the roots. [source] Electrical properties of bulk n-ZnO single crystals under hydrostatic pressurePHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2009I. K. Kamilov Abstract Pressure dependences of Hall coefficient RH(P) and resistivity , (P) have been measured for n-ZnO bulk crystals with impurity concentration Ni = 1017,1018 cm,3 and concentration of free electrons ,1017 cm,3 at T = 300 K at hydrostatic pressures up to P = 25 GPa. It has been found that the exponential increase of RH(P) and , (P), observed in the vicinity of the polymorphous transition PPH = 9 GPa, is caused by the increase of ionization energy of shallow donors. At P > PPH, a step-like decrease of the resistivity has been observed, indicating a phase transition from diamond structure to NaCl-type structure. In accordance with formulas derived from the ,heterophase structure , effective medium' model, phase volume fractions in the critical region of the polymorphous transformation have been calculated and the threshold values of normalized effective resistivity have been determined. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |