Medium Containing 10% Fetal Bovine Serum (medium + containing_10%_fetal_bovine_serum)

Distribution by Scientific Domains


Selected Abstracts


Acute exposure of human lung cells to 1,3-butadiene diepoxide results in G1 and G2 cell cycle arrest

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2005
Michael Schmiederer
Abstract 1,3-butadiene (BD) causes genetic damage, including adduct formation, sister chomatid exchange, and point mutations. Previous studies have focused on the types of genetic damage and tumors found after long-term exposure of rodents to butadiene. This study examined the effect of the most active BD metabolite, butadiene diepoxide (BDO2), on cell cycle entry and progression in human lung fibroblasts (LU cells) with a normal diploid karyotype. Serum-arrested (G0) LU cells were exposed to BDO2 for 1 hr and stimulated to divide with medium containing 10% fetal bovine serum. The BDO2 -treated LU cells were evaluated for cell cycle progression, nuclear localization of arrest mediators, mitotic index, and cellular proliferation. The BDO2 -treated cells demonstrated a substantial inhibition of cell proliferation when treated with 100 ,M BDO2 for 1 hr. No appreciable levels of apoptosis or mitotic figures were observed in the BDO2 -treated cells through 96 hr posttreatment. Flow cytometric analysis revealed that the lack of proliferation in BDO2 -treated LU cells was related to G1 arrest in about half of the cells and a delayed progression through S and G2 arrest in nearly all of the remaining cells. Both G1 and G2 arrest were prolonged and only a very small percentage of BDO2 -treated cells were eventually able to replicate. Increased nuclear localization of both p53 and p21cip1 was observed in BDO2 -treated cells, suggesting that the cell cycle arrest was p21cip1 -mediated. These results demonstrate that BDO2 induces cell cycle perturbation and arrest even with short-term exposure that does not produce other pathologic cellular effects. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source]


Expression and functional characterization of P2Y1 and P2Y12 nucleotide receptors in long-term serum-deprived glioma C6 cells

FEBS JOURNAL, Issue 8 2007
Patryk Krzemi
We characterized the expression and functional properties of the ADP-sensitive P2Y1 and P2Y12 nucleotide receptors in glioma C6 cells cultured in medium devoid of serum for up to 96 h. During this long-term serum starvation, cell morphology changed from fibroblast-like flat to round, the adhesion pattern changed, cell-cycle arrest was induced, extracellular signal-regulated kinase (ERK1/2) phosphorylation was reduced, Akt phosphorylation was enhanced, and expression of the P2Y12 receptor relative to P2Y1 was increased. These processes did not reflect differentiation into astrocytes or oligodendrocytes, as expression of glial fibrillary acidic protein and NG2 proteoglycan (standard markers of glial cell differentiation) was not increased during the serum deprivation. Transfer of the cells into fresh medium containing 10% fetal bovine serum reversed the changes. This demonstrates that serum starvation caused only temporary growth arrest of the glioma C6 cells, which were ready for rapid division as soon as the environment became more favorable. In cells starved for 72 and 96 h, expression of the P2Y1 receptor was low, and the P2Y12 receptor was the major player, responsible for ADP-evoked signal transduction. The P2Y12 receptor activated ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulated Akt activity. These effects were reduced by AR-C69931MX, a specific antagonist of the P2Y12 receptor. On the other hand, Akt phosphorylation increased in parallel with the low expression of the P2Y1 receptor, indicating the inhibitory role of P2Y1 in Akt pathway signaling. The shift in nucleotide receptor expression from P2Y1 to P2Y12 would appear to be a new and important self-regulating mechanism that promotes cell growth rather than differentiation and is a defense mechanism against effects of serum deprivation. [source]


,-cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2005
Satoshi Uchiyama
Abstract The effect of ,-cryptoxanthin, a kind of carotenoid, on cell differentiation and mineralization in osteoblastic MC3T3-E1 cells was investigated. Cells were cultured for 72 h in a minimum essential medium containing 10% fetal bovine serum (FBS), and the cells with subconfluency were changed to a medium containing either vehicle or ,-cryptoxanthin (10,8 to 10,6 M) without FBS. Cells were cultured for 3 to 21 days. Gene expression in osteoblastic cells was determined using reverse transcription-polymerase chain reaction (RT-PCR). Culture with ,-cryptoxanthin (10,7 or 10,6 M) for 3 days caused a significant increase in Runx2 type 1, Runx2 type 2, ,1 (I) collagen, and alkaline phosphatase mRNA levels in osteoblastic cells. These increases were completely blocked in the presence of cycloheximide, an inhibitor of protein synthesis, or 5,6-dichloro-1-,- D -ribofuranosylbenzimidazole (DRB), an inhibitor of transcriptional activity. Meanwhile, vitamin A (10,6 M) did not have a significant effect on Runx2 type 1 mRNA expression in the cells. The effect of ,-cryptoxanthin (10,6 M) in stimulating Runx2 type 1 and ,1 (I) collagen mRNA levels, protein content, and alkaline phosphatase activity in the cells was also seen in the presence of vitamin A (10,6 M), suggesting that the mode of ,-cryptoxanthin action differs from that of vitamin A. Prolonged culture with ,-cryptoxanthin (10,6 M) for 3 to 21 days caused a significant increase in cell number, deoxyribonucleic acid (DNA) content, protein content, and alkaline phosphatase activity in osteoblastic cells, suggesting that ,-cryptoxanthin stimulates cell proliferation and differentiation. Moreover, culture with ,-cryptoxanthin (10,7 or 10,6 M) for 5 to 21 days caused a remarkable increase in mineralization. This study demonstrates that ,-cryptoxanthin has a stimulatory effect on cell differentiation and mineralization due to enhancing gene expression of proteins, which involve in bone formation in osteoblastic MC3T3-E1 cells. © 2005 Wiley-Liss, Inc. [source]


Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and periodontal ligament cells

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2009
H. Takeuchi
Background and Objective:, Connective tissue growth factor (CCN2/CTGF) plays an important role in wound healing and regulation of the extracellular matrix in periodontal tissue. However, the functional relationship between altered transforming growth factor-beta1 levels and CCN2/CTGF has not been extensively investigated in human gingival fibroblasts and periodontal ligament cells. This study investigated the effects of transforming growth factor-beta1 on the expression of the CCN2/CTGF gene in human gingival fibroblasts and periodontal ligament cells in vitro. Material and Methods:, Cells were isolated from normal periodontal tissues and cultured in Dulbecco's modified Eagle's minimal essential medium/F12 containing 10% fetal bovine serum. Subconfluent cells were maintained under serum deprivation for 24 h then treated with Dulbecco's modified Eagle's minimal essential medium/F12 containing 0.5% fetal bovine serum (control) and 0.1, 1, 5 or 10 ng/mL of transforming growth factor-beta1 for 24, 48 or 72 h. The effects of transforming growth factor-beta1 on CCN2/CTGF mRNA expression were measured by reverse transcription,polymerase chain reaction. CCN2/CTGF protein was quantitatively analyzed using enzyme-liked immunosorbent assay. Subcellular distribution of CCN2/CTGF protein in both human gingival fibroblasts and periodontal ligament cells was observed using immunofluorescence microscopy. Results:, In both human gingival fibroblasts and periodontal ligament cells, the expression of CCN2/CTGF mRNA and CCN2/CTGF protein was significantly increased, in a dose- and time-dependent manner, in the presence of transforming growth factor-beta1. Moreover, immunofluorescence analysis indicated that immunoreactivity to CCN2/CTGF showed a granular pattern of protein localization. Conclusion:, The expression of CCN2/CTGF mRNA and protein was induced by transforming growth factor-beta1 in human gingival fibroblasts and periodontal ligament cells. These results suggest that CCN2/CTGF plays an important role in wound healing and in the regeneration of periodontal tissue. [source]