Mediterranean Soils (mediterranean + soil)

Distribution by Scientific Domains


Selected Abstracts


Quantifying the effects of aggregation, particle size and components on the colour of Mediterranean soils

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2004
M. SÁnchez-Marañón
Summary Aggregation, particle size, and chemical composition affect the colour of the soil. We have attempted to quantify and understand these effects in 12 Mediterranean soils. We measured the CIELAB colour variables hab, L*, and C*ab in aggregated and dispersed soil samples, and also in coarse sand, fine sand, silt, and clay samples before and after sequential removal of organic matter, carbonates, and Fe oxides. Grassmann's colour-mixing equations adjusted by regression analysis described the colour of the dispersed soil from its particle-size fractions with an error of 1% for hab, 4% for L*, and 9% for C*ab. This suggests that the contribution of each fraction to the colour of the dispersed soil can be accurately calculated by its colorimetric data weighted by its content and a regression coefficient, which was greatest for clay. We inferred the influence of a component within each fraction by measuring the colour changes after its removal. Iron oxides reduced hab of the silicated substrate by 19%, reduced L* by 12%, and increased C*ab by 64% in all particle-size fractions. Carbonates and organic matter had little influence: the former because they impart little colour to the silicates and the latter because there was little of it. The CIELAB colour-difference between dispersed and aggregated soil (mean ,E*ab = 15.3) was due mainly to ,L* (,14.7). Aggregation contributed to diminishing L* of dispersed soil by 34%. Scanning electron microscopy showed that Fe oxides and organic coatings cover the surface of aggregates thereby influencing soil colour. [source]


Landforms, sediments, soil development, and prehistoric site settings on the Madaba-Dhiban Plateau, Jordan

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2005
Carlos E. Cordova
This paper examines recurrent spatial patterns of prehistoric sites in relation to landforms, alluvial fills, and soil development in the uplands and valleys of the Madaba and Dhiban Plateaus of Jordan. Mousterian lithics (Middle Paleolithic) are largely found on high strath terraces plateaus, where they are associated with red Mediterranean soils. In valleys, Upper Paleolithic sites are often associated with reworked loess deposits of the Dalala allostratigraphic unit. Epipaleolithic occupations are found stratified in deposits of the Thamad Terrace, and Pre-Pottery Neolithic and Pottery Neolithic occupations are associated with colluvium mantling the Thamad Terrace. The Tur al-Abyad Terrace and the Iskanderite alluvial inset are the remnants of middle Holocene floodplains, which were attractive areas for Chalcolithic and Early Bronze Age settlements. Sometime around 4000 B.C., stream incision and further lateral erosion destroyed these floodplains. These historic terraces are underlain by alluvial deposits ranging in age from Roman to Early Islamic periods. The sequence of allostratigraphic units, paleosols, and terraces are the basis for reconstructing phases of fluvial aggradation and stream incision during the past 20,000 years. © 2005 Wiley Periodicals, Inc. [source]


Evidence for 2,4-D mineralisation in Mediterranean soils: impact of moisture content and temperature

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2009
Bachir Bouseba
Abstract BACKGROUND: The 2,4-D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4-D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4-D were able rapidly to mineralise this herbicide. The half-life of 2,4-D ranged from 8 to 30 days, and maximum mineralisation of 14C-2,4-D ranged from 57 to 71%. Extractable 14C-2,4-D and 14C-bound residues accounted for less than 1 and 15% respectively of the 14C-2,4-D initially added. The highest amounts of 14C-2,4-D bound residues were recorded in the soil with the lowest 2,4-D-mineralising ability. Although all three soils were able to mineralise 2,4-D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4-D-mineralising ability. 2,4-D-mineralising ability was positively correlated with soil moisture content. Negligible 2,4-D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4-D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues. Copyright © 2009 Society of Chemical Industry [source]


Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter?

APPLIED VEGETATION SCIENCE, Issue 2 2010
E. Martínez-Duro
Abstract Question: Our knowledge of secondary old-field succession in Mediterranean environments is extremely poor and is non-existent for restrictive soil conditions. How these ecosystems, such as those on semi-arid gypsum outcrops, recover seems a priority for managing change and for ensuring conservation of specialized and endangered biota. We tested whether reinstallation of gypsum vegetation after cropland abandonment requires: (1) soil physical restructuring and (2) chemical readjustment to enable growth and survival of specialized gypsophilous vegetation, and more specifically how time from abandonment drives such environmental change. Location: We sampled a complete set of old fields on gypsum soils (1,60 yr since abandonment) in Villarrubia de Santiago (Toledo, Spain). Methods: Generalized linear models and model comparisons were used to analyse the effect of several environmental parameters on species abundance and richness. Ordination methods (canonical correspondence analyses and partial canonical correspondence analyses) were undertaken to evaluate compositional variation among the sampled fields. Results: Secondary old-field succession on semi-arid Mediterranean gypsum soils was controlled by a complex set of factors acting relatively independently. Surprisingly, time since abandonment explains only a small proportion of compositional variation (3%). Conversely, soil chemical features independently from time since abandonment are important for explaining differences found in old-field composition. Conclusions: Secondary succession on specialized Mediterranean soils does not follow the widely described "amelioration" process in which soil features and composition are closely related over time. Restrictive soil conditions control both structure and functioning of mature communities and also secondary succession. [source]


Field-based and spectral indicators for soil erosion mapping in semi-arid mediterranean environments (Coastal Cordillera of central Chile)

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2007
Renaud Mathieu
Abstract The Coastal Cordillera of central Chile is naturally sensitive to soil erosion due to moderate to steep slopes, intense winter rains when the vegetation cover is scarce, and deeply weathered granitic rocks. In 1965, 60 per cent of its surface was moderately to very severely eroded. Today this process is still largely active, but no data are currently available to evaluate the real extent, distribution and severity of soil degradation on a regional scale. This information is vital to support efficient soil conservation plans. A multi-scale approach was implemented to produce regional land degradation maps based on remote sensing technologies. Fieldwork has shown that the surface colour or ,redness' and the density of coarse fragments are pertinent erosion indicators to describe a typical sequence of soil degradation in the context of mediterranean soil developed on granitic materials and micaschists. Field radiometric experiments concluded that both factors influence the reflectance of natural surfaces and can be modelled using radiometric indices accessible from most satellites operating in the optical domain, i.e. redness index and brightness index. Finally the radiometric indices were successfully applied to SPOT images to produce land degradation maps. Only broad classes of erosion status were discriminated and the detection of the degradation processes was only possible when most of the fertile layer had already been removed. This technology provides decision-making information required to develop regional soil conservation plans and to prioritize actions between catchment areas, especially in vast inter-tropical regions where spatialized data are not always readily available. Copyright © 2006 John Wiley & Sons, Ltd. [source]