Home About us Contact | |||
Mediterranean Shrubland (mediterranean + shrubland)
Selected AbstractsRunoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: influence of plant morphology and rainfall intensityEARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2006E. Bochet Abstract The influence of plant morphology and rainfall intensity on soil loss and runoff was determined at the plant scale for three representative species of a semi-arid patchy shrubland vegetation of east Spain, representing contrasting canopy structures and plant phenologies (Rosmarinus officinalis, Anthyllis cytisoides and Stipa tenacissima). Twenty-seven microplots of less than 1 m2, each containing one single plant, were built to quantify runoff volume and sediment yield under the canopies of the three species. Runoff and rates of soil loss measured in these plots under natural rainfall conditions were compared with control microplots built in the bare inter-plant areas. Precipitation was automatic-ally recorded and rainfall intensity calculated over a two-year period. Results indicated that individual plants played a relevant role in interrill erosion control at the microscale. Compared with a bare soil surface, rates of soil loss and runoff reduction varied strongly depending on the species. Cumulative soil loss was reduced by 94·3, 88·0 and 30·2 per cent, and cumulative runoff volume was reduced by 66·4, 50·8 and 18·4 per cent under the Rosmarinus, Stipa and Anthyllis canopies, respectively, compared with a bare surface. Anthyllis was significantly less efficient than the two other species in reducing runoff volume under its canopy. Differences between species could only be identified above a rainfall intensity threshold of 20 mm h,1. The different plant morphologies and plant compon-ents explained the different erosive responses of the three species. Canopy cover played a major role in runoff and soil loss reduction. The presence of a second layer of protection at the soil surface (litter cover) was fundamental for erosion control during intense rainfall. Rainfall intensity and soil water status prior to rainfall strongly influenced runoff and soil loss rates. The possible use of these species in restoration programmes of degraded areas is discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source] Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscapeEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2000E. Gimeno-García Summary Fire affects large parts of the dry Mediterranean shrubland, resulting in erosion and losses of plant nutrients. We have attempted to measure these effects experimentally on a calcareous hillside representative of such shrubland. Experimental fires were made on plots (4 m × 20 m) in which the fuel was controlled to obtain two different fire intensities giving means of soil surface temperature of 439°C and 232°C with temperatures exceeding 100°C lasting for 36 min and 17 min. The immediate and subsequent changes induced by fire on the soil's organic matter content and other soil chemical properties were evaluated, together with the impact of water erosion. Seven erosive rain events, which occurred after the experimental fires (from August 1995 to December 1996), were selected, and on them runoff and sediment produced from each plot were measured. The sediments collected were weighed and analysed. Taking into account the variations induced by fire on the soil properties and their losses by water erosion, estimates of the net inputs and outputs of the soil system were made. Results show that the greatest losses of both soil and nutrients took place in the 4 months immediately after the fire. Plots affected by the most intense fire showed greater losses of soil (4077 kg ha,1) than those with moderate fire intensity (3280 kg ha,1). The unburned plots produced the least sediment (72.8 kg ha,1). Organic matter and nutrient losses by water erosion were related to the degree of fire intensity. However, the largest losses of N-NH4+ and N-NO3, by water erosion corresponded to the moderate fire (8.1 and 7.5 mg N m,2, respectively). [source] Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystemsGLOBAL CHANGE BIOLOGY, Issue 2 2009PATRICIO GARCÍA-FAYOS Abstract We analyzed the consequences of climate change and the increase in soil erosion, as well as their interaction on plant and soil properties in semiarid Mediterranean shrublands in Eastern Spain. Current models on drivers of biodiversity change predict an additive or synergistic interaction between drivers that will increase the negative effects of each one. We used a climatic gradient that reproduces the predicted climate changes in temperature and precipitation for the next 40 years of the wettest and coldest end of the gradient; we also compared flat areas with 20° steep hillslopes. We found that plant species richness and plant cover are negatively affected by climate change and soil erosion, which in turn negatively affects soil resistance to erosion, nutrient content and water holding capacity. We also found that plant species diversity correlates weakly with plant cover but strongly with soil properties related to fertility, water holding capacity and resistance to erosion. Conversely, these soil properties correlate weaker with plant species cover. The joint effect of climate change and soil erosion on plant species richness and soil characteristics is antagonistic. That is, the absolute magnitude of change is smaller than the sum of both effects. However, there is no interaction between climate change and soil erosion on plant cover and their effects fit the additive model. The differences in the interaction model between plant cover and species richness supports the view that several soil properties are more linked to the effect that particular plant species have on soil processes than to the quantity and quality of the plant cover and biomass they support. Our findings suggest that plant species richness is a better indicator than plant cover of ecosystems services related with soil development and protection to erosion in semiarid Mediterranean climates. [source] Seed dynamics of the mast seeding tussock grass Ampelodesmos mauritanica in Mediterranean shrublandsJOURNAL OF ECOLOGY, Issue 3 2000Montserrat Vilà Summary 1,The Mediterranean perennial grass Ampelodesmos mauritanica may have the potential to expand its range. We analysed temporal variability of its reproductive components (seedfall, seed bank, seed predation, seed germination, seedling emergence, survival and growth) in three microsites (open areas, beneath Ampelodesmos and beneath shrubs) at two sites. 2,Reproductive components prior to seedling emergence were both closely linked and very similar between microsites within a site. Seedling survival and growth differed between microsites, being lowest in open areas. Recruitment patterns cannot therefore be predicted from seedfall. 3,Abundant seed production in 1996 was followed by successful germination and high seedling survival. In the following (non-masting) year, although Ampelodesmos has a low-density persistent seed bank, recruitment was much lower because germination was low and post-dispersal seed predation was high. 4,Our results suggest that Ampelodesmos reproduction is episodic. Expansion of its distribution may be triggered by intermittent seedling recruitment following masting, but is otherwise constrained by seed limitation, post-dispersal seed predation and a loss of viability in the seed bank. [source] Influence of land-use types and climatic variables on seasonal patterns of NDVI in Mediterranean Iberian ecosystemsAPPLIED VEGETATION SCIENCE, Issue 2 2009P. Durante Abstract Question: What is the influence of management on the functioning of vegetation over time in Mediterranean ecosystems under different climate conditions? Location: Mediterranean shrublands and forests in SE Iberia (Andalusia). Methods: We evaluated the Normalized Difference Vegetation Index (NDVI) for the 1997-2002 time series to determine phenological vegetation patterns under different historical management regimes. Three altitudinal ranges were considered within each area to explore climate × management interactions. Each phenological pattern was analysed using time series statistics, together with precipitation (monthly and cumulative) and temperature. Results: NDVI time series were significantly different under different management regimes, particularly in highly transformed areas, which showed the lowest NDVI, weakest annual seasonality and a more immediate phenological response to precipitation. The NDVI relationship with precipitation was strongest in the summer-autumn period, when precipitation is the main plant growth-limiting factor. Conclusions: NDVI time series analyses elucidated complex influences of land use and climate on ecosystem functioning in these Mediterranean ecosystems. We demonstrated that NDVI time series analyses are a useful tool for monitoring programmes because of their sensitivity to changes, ease of use and applicability to large-scale studies. [source] Expanding the Global Network of Protected Areas to Save the Imperiled Mediterranean BiomeCONSERVATION BIOLOGY, Issue 1 2009EMMA C. UNDERWOOD análisis de disparidad; áreas protegidas; biodiversidad; ecosistemas Mediterráneos; pérdida de hábitat Abstract:,Global goals established by the Convention on Biological Diversity stipulate that 10% of the world's ecological regions must be effectively conserved by 2010. To meet that goal for the mediterranean biome, at least 5% more land must be formally protected over the next few years. Although global assessments identify the mediterranean biome as a priority, without biologically meaningful analysis units, finer-resolution data, and corresponding prioritization analysis, future conservation investments could lead to more area being protected without increasing the representation of unique mediterranean ecosystems. We used standardized analysis units and six potential natural vegetation types stratified by 3 elevation zones in a global gap analysis that systematically explored conservation priorities across the mediterranean biome. The highest levels of protection were in Australia, South Africa, and California-Baja California (from 9,11%), and the lowest levels of protection were in Chile and the mediterranean Basin (<1%). Protection was skewed to montane elevations in three out of five regions. Across the biome only one of the six vegetation types,mediterranean shrubland,exceeded 10% protection. The remaining vegetation types,grassland, scrub, succulent dominated, woodland, and forest,each had <3% protection. To guard against biases in future protection efforts and ensure the protection of species characteristic of the mediterranean biome, we identified biodiversity assemblages with <10% protection and subject to >30% conversion and suggest that these assemblages be elevated to high-priority status in future conservation efforts. Resumen:,Las metas globales establecidas por la Convención sobre Diversidad Biológica estipulan que 10% de las regiones ecológicas del mundo deberán estar conservadas efectivamente en 2010. Para alcanzar esa meta en el bioma mediterráneo, por lo menos 5% más de superficie debe estar protegida formalmente en los próximos años. Aunque las evaluaciones globales identifican al bioma mediterráneo como una prioridad, sin unidades de análisis biológicamente significativas, datos de resolución más fina y los correspondientes análisis de priorización, las inversiones futuras en conservación pudieran conducir a la protección de más superficie sin incrementar la representación de los ecosistemas mediterráneos únicos. Utilizamos unidades de análisis estandarizadas y seis tipos potenciales de vegetación natural estratificados en tres zonas de elevación en un análisis global de disparidad que exploró sistemáticamente las prioridades de conservación en el bioma mediterráneo. Los niveles de protección más altos se localizaron en Australia, África del Sur y California-Baja California (de 9,11%) y los niveles de protección más bajos se localizaron en Chile y la Cuenca del mediterráneo (<1%). La protección estaba sesgada hacia elevaciones altas en tres de las cinco regiones. En todo el bioma, solo uno de los seis tipos de vegetación,matorral mediterráneo,excedió 10% de protección. Los tipos de vegetación restantes,pastizal, matorral, dominio de suculentas, y bosques,tenían <3% de protección cada uno. Para evitar sesgos en futuros esfuerzos de protección y asegurar la protección de especies características del bioma mediterráneo, identificamos ensambles de biodiversidad con <10% de protección y sujetos a >30% de conversión y sugerimos que estos ensambles sean elevados a un estatus de alta prioridad en esfuerzos de conservación en el futuro. [source] The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscapeOIKOS, Issue 3 2006Betsy Vulliamy The main aims of this study were to assess grazing impacts on bee communities in fragmented mediterranean shrubland (phrygana) and woodland habitats that also experience frequent wildfires, and to explain the mechanisms by which these impacts occur. Fieldwork was carried out in 1999 and 2000 on Mount Carmel, in northern Israel, a known hot-spot for bee diversity. Habitats with a range of post-burn ages and varying intensities of cattle grazing were surveyed by transect recording, grazing levels, and the diversity and abundance of both flowers and bees were measured. The species richness of both bees and flowers were highest at moderate to high grazing intensities, and path-analysis indicated that the effects of both grazing and fire on bee diversity were mediated mainly through changes in flower diversity, herb flowers being more important than shrubs. The abundance of bees increased with intensified grazing pressure even at the highest levels surveyed. Surprisingly though, changes in bee abundance at high grazing levels were not caused directly by changes in flower cover. The variation in bee abundance may have been due to higher numbers of solitary bees from the family Halictidae in grazed sites, where compacted ground (nesting resource) and composites (forage resource) were abundant. The effects of grazing on plants were clearest in the intermediate-aged sites, where cattle inhibited the growth of some of the dominant shrubs, creating or maintaining more open patches where light-demanding herbs could grow, thus allowing a diverse flora to develop. Overall, bee communities benefit from a relatively high level of grazing in phrygana. Although bee and flower diversity may decrease under very heavy grazing, the present levels of grazing on Mount Carmel appear to have only beneficial effects on the bee community. [source] Composition, size and dynamics of the seed bank in a mediterranean shrubland of ChileAUSTRAL ECOLOGY, Issue 5 2004Javier A. Figueroa Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above-ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short-lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate-age patches (10,20 years old) rather than in mature vegetation (30,50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank. [source] |