Home About us Contact | |||
Mediterranean Mountain Forest (mediterranean + mountain_forest)
Selected AbstractsResponse of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forestAPPLIED VEGETATION SCIENCE, Issue 4 2009Ignacio Barbeito Abstract Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine-scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5-ha plots located in two types of stand with different management intensities (even-aged and uneven-aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even-aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even-aged stands, or favouring tree and shrub cover in the case of uneven-aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate. [source] Facilitation of tree saplings by nurse plants: Microhabitat amelioration or protection against herbivores?JOURNAL OF VEGETATION SCIENCE, Issue 2 2008Lorena Gómez-Aparicio Abstract Question: Positive interactions are predicted to be common in communities developing under high physical stress or high herbivory pressure due to neighbour amelioration of limiting physical and consumer stresses, respectively. However, when both stress sources meet in the same community, the relative importance of the two facilitation mechanisms is poorly understood. We ask: What is the relative importance of abiotic vs. biotic mechanisms of facilitation of tree saplings by shrubs in Mediterranean mountain forests? Location: Sierra Nevada, SE Spain (1800,1850 m a.s.l.) Methods: Saplings of four tree taxa (Acer opalus ssp. grana-tense, Quercus ilex, Pinus nigra ssp. salzmanii and P. sylvestris var. nevadensis) were planted following a 2 × 2 factorial design: two levels of herbivory (control and ungulate exclusion) and two microhabitats (under shrubs and in open areas). Sapling survival and growth were monitored for five years. Results: Shrubs had positive effects on sapling survival both in control and ungulate excluded plots. This effect was species-specific, with shrubs increasing the survival of Acer opalus and Quercus ilex three and twofold, respectively, but having a minor effect on the Pinus species. Herbivory damage was also species-specific, being much higher for Acer opalus than for any other species. Shrubs did not protect saplings of any species against ungulates. Thus, all Acer saplings (the most damaged species) suffered herbivory outside the exclosures, which largely reduced sapling height. Conclusions: Protection from abiotic stress (summer drought and winter frost) was much more relevant than protection from biotic stress (herbivory). However, we propose that the final balance between the two mechanisms can be expected to vary strongly between sites, depending on the relative magnitude of the different sources of stress and the intrinsic traits (e.g. palatability) of the species interacting. [source] Response of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forestAPPLIED VEGETATION SCIENCE, Issue 4 2009Ignacio Barbeito Abstract Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine-scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5-ha plots located in two types of stand with different management intensities (even-aged and uneven-aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even-aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even-aged stands, or favouring tree and shrub cover in the case of uneven-aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate. [source] |