Home About us Contact | |||
Mediterranean Environments (mediterranean + environment)
Kinds of Mediterranean Environments Selected AbstractsEffects of Water Shortage and Air Temperature on Seed Yield and Seed Performance of Lucerne (Medicago sativa L.) in a Mediterranean EnvironmentJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2009A. J. Karamanos Abstract Seed production and performance of lucerne is characterized by fluctuating yields with often poor seed quality, and is dependent on environmental conditions, genetic characteristics and agronomic techniques applied during seed set, development, maturation and storage. A field experiment was carried out in two successive growing seasons at Kopais (southern Greece) to evaluate the effects of drought stress imposed by three irrigation treatments, and temperature during flowering and seed filling on lucerne seed yield and quality. Plant water status, expressed in terms of the water potential index (WPI), growth in leaf area and dry weight, seed yield and yield components, flowering and seed quality parameters were measured throughout the growing seasons. The adopted irrigation schemes produced a clear differentiation among treatments concerning their plant water status. Seed yield and leaf growth showed close positive correlations with WPI. An irrigation effect was also detected for the number of pods/plant, but not for the average weight of seeds/pod. Less negative values of WPI, and, especially, higher temperatures during flowering were also positively associated with a longer duration of flowering, as well as with higher total numbers of inflorescences. A very good description of the time course of seed germination was performed by fitting the Richards' function to the real data. By examining the germination parameters derived from this function it was found that final germination and germination rate were improved, while germination duration was shortened with more negative values of WPI. The effects of growing season and seeding period were occasionally equally or more important than irrigation effects. These results are also discussed in terms of their practical implications for seed producing lucerne crops. [source] Road Slope Revegetation in Semiarid Mediterranean Environments.RESTORATION ECOLOGY, Issue 1 2007Part I: Seed Dispersal, Spontaneous Colonization Abstract The importance of neighboring vegetation as a seed reservoir for spontaneous colonization of adjacent road slopes was analyzed in a semiarid region of east Spain. Two independent methodological approaches were used to examine the relative contribution of seed from neighboring vegetation and the efficiency of different seed dispersal strategies in plant colonization. We first used a randomization test to compare floristic similarity between road slopes, neighboring flora, and local flora (the regional species pool found in the same climate and soil conditions as the road slopes). Second, we compared seed dispersal mechanisms of road slope vegetation with those of the surrounding area using frequency analysis. Species composition of road slopes was more similar to that of the flora of adjacent surrounding areas than expected by chance. Anemochorous (wind-dispersed) plants were over-represented in road slopes 8 years after road slopes were built. We concluded that seed dispersal from neighboring vegetation is an important factor in the vegetative colonization of road slopes. However, this initial species pool was also strongly shaped by the harsh environmental conditions of roadcuts and southern aspect. These results have important implications in road slope restoration because they suggest that naturally vegetated areas should be maintained adjacent to road slopes to enhance seed immigration from species adapted to local site conditions, which will accelerate the successional process. The application of this single reclamation strategy and mixed strategies that combine the use of natural colonization and soil amendment for road slope restoration in Mediterranean environmental conditions is discussed. [source] Roadfill Revegetation in Semiarid Mediterranean Environments.RESTORATION ECOLOGY, Issue 1 2007Hydroseeding, Part II: Topsoiling, Species Selection Abstract Erosion is one of the main problems in roadfill restoration. Revegetation is widely used as a method to reduce erosion rates, and it is often carried out through hydroseeding. In semiarid Mediterranean conditions, this approach to revegetation often produces poor results due to climatic limitations. We evaluated whether (1) spreading topsoil and (2) hydroseeding with local rather than commercial species mixtures could improve the vegetative cover of roadfills. The study was carried out in 24 plots over a 20-month period. At the end of the study, vegetation cover was higher in topsoiled plots (38.8%) than in nontopsoiled plots (21.5%). Locally selected species produced higher vegetative cover (61.1%) than did standard commercial species (52.2%). After 20 months, the erosion index was not different among any treatment probably due to the low sensitivity of this variable. These results suggest that amendment of soils through the addition of topsoil is an important technique in roadfill revegetation in Mediterranean environments. Additionally, hydroseeding with local species will produce better vegetative cover on roadfills than does hydroseeding with available commercial species. [source] Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: a simulation studyEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2005Matthias Boer Abstract A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover-erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover,erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30,70 mm h,1 and 10,30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd. [source] Scorpiurus muricatus L. subsp. subvillosus (L.) Thell., a potential forage legume species for a Mediterranean environment: a reviewGRASS & FORAGE SCIENCE, Issue 1 2010V. Abbate Abstract Prickly scorpion's tail, Scorpiurus muricatus L. subsp. subvillosus (L.) Thell., is an annual legume species, widespread in pastures of the basin of the Mediterranean Sea. It has been neglected by researchers and farmers for a long time, although the species has promise as a forage crop for its high nutritive value, self-reseeding capability and its preference by ruminants. Harvesting and threshing of seed, however, are difficult and it has seed-coat dormancy, which delays and reduces germination, hindering its use as a forage crop. It is suggested that plant breeding programmes would allow the selection of ecotypes and varieties for field crop cultivation. In this study, the main botanical, biological, ecological and agronomic traits are reviewed to identify those issues that currently limit its introduction into cultivation as a forage crop in Mediterranean areas. [source] Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, SpainHYDROLOGICAL PROCESSES, Issue 8 2005Antonio Ceballos Abstract The objective of this study was to validate the soil moisture data derived from coarse-resolution active microwave data (50 km) from the ERS scatterometer. The retrieval technique is based on a change detection method coupled with a data-based modelling approach to account for seasonal vegetation dynamics. The technique is able to derive information about the soil moisture content corresponding to the degree of saturation of the topmost soil layer (,5 cm). To estimate profile soil moisture contents down to 100 cm depth from the scatterometer data, a simple two-layer water balance model is used, which generates a red noise-like soil moisture spectrum. The retrieval technique had been successfully applied in the Ukraine in a previous study. In this paper, the performance of the model in a semi-arid Mediterranean environment characterized by low annual precipitation (400 mm), hot dry summers and sandy soils is investigated. To this end, field measurements from the REMEDHUS soil moisture station network in the semi-arid parts of the Duero Basin (Spain) were used. The results reveal a significant coefficient of determination (R2 = 0·75) for the averaged 0,100 cm soil moisture profile and a root mean square error (RMSE) of 2·2 vol%. The spatial arrangement of the REMEDHUS soil moisture stations also allowed us to study the influence of the small-scale variability of soil moisture within the ERS scatterometer footprint. The results show that the small-scale variability in the study area is modest and can be explained in terms of texture fraction distribution in the soil profiles. Copyright © 2004 John Wiley & Sons, Ltd. [source] Food habits of the wildcat (Felis silvestris) in a peculiar habitat: the Mediterranean high mountainJOURNAL OF ZOOLOGY, Issue 1 2003M. Moleón The feeding spectrum of the wildcat Felis silvestris Schreber, 1777 was studied in two sites with different ecological characteristics, both situated in the same Mediterranean environment in the high mountain of the Sierra Nevada National Park, south-east Spain, where the rabbit Oryctolagus cuniculus is absent. Scat analysis (n=101 faeces; n=402 prey items) showed that the diet is based on rodents, fundamentally wood mouse Apodemus sylvaticus, Mediterranean pine vole Microtus duodecimcostatus and south-western water vole Arvicola sapidus. Results showed strong differences between the two sites (,2=74.04, d.f.=5, P<0.001), that is a predominance of voles in the mesic Chico river, whereas mice are predominant in the xeric Tejos ravine. Red-legged partridge Alectoris rufa and carrion also played an important role, especially in biomass terms. The overall diet differed essentially from that of the Mediterranean region, which surrounds the study area, since in these areas rabbits constitute the primary prey. However, the diet of the mountain wildcats is similar to that in the Eurosiberian floral region, despite its distance from the Sierra Nevada. In conclusion, the Iberian wildcat seems to behave as a facultative specialist, since it prefers rabbits whenever they are available, but rodents constitute most of its diet if rabbits are scarce or absent. [source] Sustainable production of crops and pastures under drought in a Mediterranean environmentANNALS OF APPLIED BIOLOGY, Issue 2 2004NEIL C TURNER Summary Mediterranean environments are characterised by cool wet winters and hot dry summers. While native vegetation in Mediterranean-climatic zones usually comprises a mixture of perennial and annual plants, agricultural development in the Mediterranean-climatic region of Australia has led to the clearing of the perennial vegetation and its replacement with annual crops and pastures. In the Mediterranean environments of southern Australia this has led to secondary (dryland) salinisation. In order to slow land degradation, perennial trees and pasture species are being reintroduced to increase the productivity of the saline areas. The annual crops and pastures that form the backbone of dryland farming systems in the Mediterranean-climatic zone of Australia are grown during the cool wet winter months on incoming rainfall and mature during spring and early summer as temperatures and rates of evaporation rise and rainfall decreases. Thus, crop and pasture growth is usually curtailed by terminal drought. Where available, supplementary irrigation in spring can lead to significant increases in yield and water use efficiency. In order to sustain production of annual crops in Mediterranean environments, both agronomic and genetic options have been employed. An analysis of the yield increases of wheat in Mediterranean-climatic regions shows that there has generally been an increase in the yields over the past decades, albeit at a lower rate than in more temperate regions. Approximately half of this increase can be attributed to agronomic improvements and half to genetic improvements. The agronomic improvements that have been utilised to sustain the increased yields include earlier planting to more closely match crop growth to rainfall distribution, use of fertilisers to increase early growth, minimum tillage to enable earlier planting and increase plant transpiration at the expense of soil evaporation, rotations to reduce weed control and disease incidence, and use of herbicides, insecticides and fungicides to reduce losses from weeds, insects and disease. Genetic improvements include changing the phenological development to better match the rainfall, increased early vigour, deeper rooting, osmotic adjustment, increased transpiration efficiency and improved assimilate storage and remobilisation. Mediterranean environments that are subjected annually to terminal drought can be both environmentally and economically sustainable, but to maximise plant water use efficiency while maintaining crop productivity requires an understanding of the interaction between genotypes, environment and management. [source] Complementary use of natural and artificial wetlands by waterbirds wintering in Doñana, south-west SpainAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2009Janusz Kloskowski Abstract 1.The Doñana wetland complex (SW Spain) holds more wintering waterfowl than any other wetland in Europe. 2.This study focused on the use made by 12 common waterbirds (eight ducks and four waders) of the natural seasonal marshes in Doñana National Park (DNP) and the adjacent Veta la Palma (VLP) fish ponds created in the early 1990s. Data used were from aerial and terrestrial surveys collected between October and February during six consecutive winters from 1998/99 to 2003/04. Changes in distribution of each bird taxon were related to changes in the extent of flooded marshes within DNP. Up to 295,000 ducks were counted in VLP during dry periods, and up to 770,000 in DNP when it was flooded. 3.The timing and extent of flooding in DNP was highly variable, but there was a consistent pattern in which ducks concentrated in VLP during dry months and winters but redistributed to DNP as more of it was flooded. This refuge effect was also strong for black-tailed godwits Limosa limosa, but much less so for other waders. Waders feed mainly on invertebrates, and invertebrate biomass in VLP was found to be higher than in DNP. Ducks feed mainly on seeds and plant material, which are more abundant in DNP when flooded. 4.When water levels in DNP were stable over the course of a winter, or controlled for in multivariate models, the numbers of ducks at VLP declined over time, probably due to reduced availability of plant foods. In contrast, numbers of waders at VLP were more stable, and their invertebrate prey became more abundant over time, at least in the winter 2003/4. 5.In this extremely important wetland complex, the value of natural and artificial wetlands for wintering waterbirds are complementary, providing suitable habitat for different species and for different conditions in a highly variable Mediterranean environment. Copyright © 2009 John Wiley & Sons, Ltd. [source] Hydrological and erosional response to natural rainfall in a semi-arid area of south-east SpainHYDROLOGICAL PROCESSES, Issue 4 2001M. Martinez-Mena Abstract A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi-arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero-order experimental microcatchments (328,759 m2), representative of an extensive semi-arid watershed with a high potential erosion risk in the south-east of Spain, were selected and monitored for 3 years (1991,93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1-min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m,2 year,1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h,1 was considered as ,erosive rainfall' in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore-size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd. [source] Field Pea Seeding Management for Semi-arid Mediterranean ConditionsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2004A. M. Tawaha Abstract The effects of seeding rate (30, 60 and 90 seeds m,2), seeding date (14 January, 28 January and 12 February), seed weight (0.18 and 0.25 g seed,1), seeding depth (3 and 6 cm), and phosphorus fertilization rate (17.5, 35.0 and 52.5 kg P ha,1) and placement method (banded or broadcasted) on field pea (Pisum sativum L.) development and seed yields were investigated in irrigated field experiments conducted in northern Jordan in 2000 and 2001. Results and treatment responses were consistent in both years. Seeding rate, seeding date, seed weight and rate and method of phosphorus fertilization had significant effects on most traits measured; planting depth however did not affect any of the traits. Generally a positive correlation was observed between each factor and seed yield and yield components, with the exception of a negative correlation between seeding rate and yield components, and seeding date and yield and yield components. Increase in seeding rate from 30 to 90 seeds m,2, and increase in P fertilization from 17.5 to 52.5 kg ha,1 alone increased seed yields by 50 and 41 %, respectively. Each delay of 2 weeks for seeding from mid-January resulted in reductions of 12 % in seed yields. Overall, the results revealed that a combination of early seeding (14 January), of large seeds at an high seeding rate (90 seeds m,2), with P fertilizer banding (52.5 kg P ha,1) maximize field pea yields in irrigated fields in semi-arid Mediterranean environments. With such management pea seed yields can be as high as 2800 kg ha,1. [source] Relationship between Carbon Isotope Discrimination and Grain Yield in Spring Wheat Cultivated under Different Water RegimesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 10 2007Xing Xu Abstract In C3 plants, carbon isotope discrimination (,) has been proposed as an indirect selection criterion for grain yield. Reported correlations between , and grain yield however, differ highly according to the analyzed organ or tissue, the stage of sampling, and the environment and water regime. In a first experiment carried out in spring wheat during two consecutive seasons in the dry conditions of northwest Mexico (Ciudad Obregon, Sonora), different water treatments were applied, corresponding to the main water regimes available to spring wheat worldwide, and the relationships between , values of different organs and grain yield were examined. Under terminal (post-anthesis) water stress, grain yield was positively associated with , in grain at maturity and in leaf at anthesis, confirming results previously obtained under Mediterranean environments. Under early (pre-anthesis) water stress and residual moisture stress, the association between grain , and yield was weaker and highly depended on the quantity of water stored in the soil at sowing. No correlation was found between , and grain yield under optimal irrigation. The relationship between , and grain yield was also studied during two consecutive seasons in 20 bread wheat cultivars in the Ningxia region (Northern China), characterized by winter drought (pre-anthesis water stress). Wheat was grown under rainfed conditions in two locations (Guyuan and Pengyang) and under irrigated conditions in another two (Yinchuan and Huinong). In Huinong, the crop was also exposed to salt stress. Highly significant positive associations were found between leaf and grain , and grain yields across the environments. The relationship between , and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, the presence of salt in the soil, and the occurrence of irrigation before anthesis. These two experiments confirmed the value of , as an indirect selection criterion for yield and a phenotyping tool under post-anthesis water stress (including limited irrigation). [source] A conditional GIS-interpolation-based model for mapping soil-water erosion processes in LebanonLAND DEGRADATION AND DEVELOPMENT, Issue 2 2008R. Bou Kheir Abstract Soil erosion by water is a major cause of landscape degradation in Mediterranean environments, including Lebanon. This paper proposes a conditional decision-rule interpolation-based model to predict the distribution of multiple erosion processes (i.e. sheet, mass and linear) in a representative area of Lebanon from the measured erosion signs in the field (root exposure, earth pillars, soil etching and drift and linear channels). First, erosion proxies were derived from the structural OASIS classification of Landsat thematic mapper (TM) imageries combined with the addition of several thematic erosion maps (slope gradient, aspect and curvature, drainage density, vegetal cover, soil infiltration and erodibility and rock infiltration/movement) under a geographic information systems (GIS) environment. Second, erosion signs were measured in the field, and interpolated by the statistical moments (means and variance) in the defined erosion proxies, thus producing quantitative erosion maps (t,ha,1) at a scale of 1:100,000. Seven decision rules were then generated and applied on these maps in order to produce the overall decisive erosion map reflecting all existing erosion processes, that is, equality (ER), dominance (DOR), bimodality (BR), masking (MR), aggravating (AR), dependence (DER) and independence (IR). The produced erosion maps are divided into seven classes ranging between 0 and more than 1·8,t,ha,1 for sheet erosion, and 0 and more than 10·5,t,ha,1 for mass and linear erosion. They are fairly matching with coincidences values equal to 43 per cent (sheet/linear), 48 per cent (sheet/mass) and 49 per cent (linear/mass). The overall accuracies of these maps were estimated to be 76 per cent (sheet erosion), 78 per cent (mass erosion) and 78·5 per cent (linear erosion). The overall decisive erosion map with 15 classes corresponds well to land management needs. The model used is relatively simple, and may also be applied to other areas. It is particularly useful when GIS database on factors influencing erosion is limited. Copyright © 2007 John Wiley & Sons, Ltd. [source] Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditionsPLANT BREEDING, Issue 5 2001Y. Rharrabti Abstract The unpredictability of the Mediterranean climate causes fluctuations in wheat yield and quality, but offers the opportunity for obtaining high-quality durum wheat in terms of grain protein content. Twenty-five durum wheat genotypes were grown under irrigated and rainfed conditions at each of two latitudes in Spain during 1998 and 1999. Differences between latitudes in grain protein content and chlorophyll content in the flag leaf were attributable to nitrogen fertilization management. Cycle length until anthesis was less affected by the environment than grain-filling duration, and was longer under irrigated conditions than in the rainfed sites. A negative asymptotic curve was the best equation to fit the relationship between yield and protein content, suggesting that yield improvements in fertile environments may be attained with negligible reductions in protein content. ,Jabato', ,Waha', ,Lagost-3', ,Massara-1' and ,Vit,on' showed medium to high yield, yield stability and high protein content. Chlorophyll content in the flag leaf, measured at anthesis with the soil-plant analysis development (SPAD) portable field unit, may be useful for the fast and cheap detection of durum wheat genotypes with high grain protein content in drought-stressed Mediterranean environments. [source] How Much Ecology Do We Need to Know to Restore Mediterranean Ecosystems?RESTORATION ECOLOGY, Issue 3 2007Fernando Valladares Abstract Despite important advances in ecological knowledge of Mediterranean-type ecosystems, advances in restoration ecology have not seen a parallel increase in these systems. Although some concepts such as positive plant,plant interaction (facilitation) have received attention in the restoration ecology community, others such as phenotypic plasticity have not. Some concepts (e.g., environmental heterogeneity) are mature enough for a wide use in restoration, whereas available knowledge on others (e.g., facilitation, plasticity) is less conclusive. However, the scientific knowledge is in general enough to significantly improve the guidelines for restoration of Mediterranean ecosystems. Our review suggests that (1) the extent of facilitation in dry ecosystems is partially understood, with supporting, but somewhat contradictory empirical evidence for its potential use in restoration; (2) the influence of habitat heterogeneity on plant performance and plasticity is only beginning to be understood, with a strong bias toward patterns of structural heterogeneity and negligible information on functional heterogeneity; and (3) sound evaluations of phenotypic plasticity might be useful to increase the success of restoration practices in patchy Mediterranean environments. Future global change scenarios involving temperature rise, reduced precipitation, increased frequency of extreme climatic events, and important land use changes and fragmentation must be particularly considered when restoring Mediterranean ecosystems. Further research on how to incorporate results on facilitation, environmental heterogeneity, and plasticity within a global change framework is clearly needed. [source] Roadfill Revegetation in Semiarid Mediterranean Environments.RESTORATION ECOLOGY, Issue 1 2007Hydroseeding, Part II: Topsoiling, Species Selection Abstract Erosion is one of the main problems in roadfill restoration. Revegetation is widely used as a method to reduce erosion rates, and it is often carried out through hydroseeding. In semiarid Mediterranean conditions, this approach to revegetation often produces poor results due to climatic limitations. We evaluated whether (1) spreading topsoil and (2) hydroseeding with local rather than commercial species mixtures could improve the vegetative cover of roadfills. The study was carried out in 24 plots over a 20-month period. At the end of the study, vegetation cover was higher in topsoiled plots (38.8%) than in nontopsoiled plots (21.5%). Locally selected species produced higher vegetative cover (61.1%) than did standard commercial species (52.2%). After 20 months, the erosion index was not different among any treatment probably due to the low sensitivity of this variable. These results suggest that amendment of soils through the addition of topsoil is an important technique in roadfill revegetation in Mediterranean environments. Additionally, hydroseeding with local species will produce better vegetative cover on roadfills than does hydroseeding with available commercial species. [source] Sustainable production of crops and pastures under drought in a Mediterranean environmentANNALS OF APPLIED BIOLOGY, Issue 2 2004NEIL C TURNER Summary Mediterranean environments are characterised by cool wet winters and hot dry summers. While native vegetation in Mediterranean-climatic zones usually comprises a mixture of perennial and annual plants, agricultural development in the Mediterranean-climatic region of Australia has led to the clearing of the perennial vegetation and its replacement with annual crops and pastures. In the Mediterranean environments of southern Australia this has led to secondary (dryland) salinisation. In order to slow land degradation, perennial trees and pasture species are being reintroduced to increase the productivity of the saline areas. The annual crops and pastures that form the backbone of dryland farming systems in the Mediterranean-climatic zone of Australia are grown during the cool wet winter months on incoming rainfall and mature during spring and early summer as temperatures and rates of evaporation rise and rainfall decreases. Thus, crop and pasture growth is usually curtailed by terminal drought. Where available, supplementary irrigation in spring can lead to significant increases in yield and water use efficiency. In order to sustain production of annual crops in Mediterranean environments, both agronomic and genetic options have been employed. An analysis of the yield increases of wheat in Mediterranean-climatic regions shows that there has generally been an increase in the yields over the past decades, albeit at a lower rate than in more temperate regions. Approximately half of this increase can be attributed to agronomic improvements and half to genetic improvements. The agronomic improvements that have been utilised to sustain the increased yields include earlier planting to more closely match crop growth to rainfall distribution, use of fertilisers to increase early growth, minimum tillage to enable earlier planting and increase plant transpiration at the expense of soil evaporation, rotations to reduce weed control and disease incidence, and use of herbicides, insecticides and fungicides to reduce losses from weeds, insects and disease. Genetic improvements include changing the phenological development to better match the rainfall, increased early vigour, deeper rooting, osmotic adjustment, increased transpiration efficiency and improved assimilate storage and remobilisation. Mediterranean environments that are subjected annually to terminal drought can be both environmentally and economically sustainable, but to maximise plant water use efficiency while maintaining crop productivity requires an understanding of the interaction between genotypes, environment and management. [source] Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter?APPLIED VEGETATION SCIENCE, Issue 2 2010E. Martínez-Duro Abstract Question: Our knowledge of secondary old-field succession in Mediterranean environments is extremely poor and is non-existent for restrictive soil conditions. How these ecosystems, such as those on semi-arid gypsum outcrops, recover seems a priority for managing change and for ensuring conservation of specialized and endangered biota. We tested whether reinstallation of gypsum vegetation after cropland abandonment requires: (1) soil physical restructuring and (2) chemical readjustment to enable growth and survival of specialized gypsophilous vegetation, and more specifically how time from abandonment drives such environmental change. Location: We sampled a complete set of old fields on gypsum soils (1,60 yr since abandonment) in Villarrubia de Santiago (Toledo, Spain). Methods: Generalized linear models and model comparisons were used to analyse the effect of several environmental parameters on species abundance and richness. Ordination methods (canonical correspondence analyses and partial canonical correspondence analyses) were undertaken to evaluate compositional variation among the sampled fields. Results: Secondary old-field succession on semi-arid Mediterranean gypsum soils was controlled by a complex set of factors acting relatively independently. Surprisingly, time since abandonment explains only a small proportion of compositional variation (3%). Conversely, soil chemical features independently from time since abandonment are important for explaining differences found in old-field composition. Conclusions: Secondary succession on specialized Mediterranean soils does not follow the widely described "amelioration" process in which soil features and composition are closely related over time. Restrictive soil conditions control both structure and functioning of mature communities and also secondary succession. [source] Field-based and spectral indicators for soil erosion mapping in semi-arid mediterranean environments (Coastal Cordillera of central Chile)EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2007Renaud Mathieu Abstract The Coastal Cordillera of central Chile is naturally sensitive to soil erosion due to moderate to steep slopes, intense winter rains when the vegetation cover is scarce, and deeply weathered granitic rocks. In 1965, 60 per cent of its surface was moderately to very severely eroded. Today this process is still largely active, but no data are currently available to evaluate the real extent, distribution and severity of soil degradation on a regional scale. This information is vital to support efficient soil conservation plans. A multi-scale approach was implemented to produce regional land degradation maps based on remote sensing technologies. Fieldwork has shown that the surface colour or ,redness' and the density of coarse fragments are pertinent erosion indicators to describe a typical sequence of soil degradation in the context of mediterranean soil developed on granitic materials and micaschists. Field radiometric experiments concluded that both factors influence the reflectance of natural surfaces and can be modelled using radiometric indices accessible from most satellites operating in the optical domain, i.e. redness index and brightness index. Finally the radiometric indices were successfully applied to SPOT images to produce land degradation maps. Only broad classes of erosion status were discriminated and the detection of the degradation processes was only possible when most of the fertile layer had already been removed. This technology provides decision-making information required to develop regional soil conservation plans and to prioritize actions between catchment areas, especially in vast inter-tropical regions where spatialized data are not always readily available. Copyright © 2006 John Wiley & Sons, Ltd. [source] Identification, measurement and interpretation of tree rings in woody species from mediterranean climatesBIOLOGICAL REVIEWS, Issue 1 2003PAOLO CHERUBINI ABSTRACT We review the literature dealing with mediterranean climate, vegetation, phenology and ecophysiology relevant to the understanding of tree-ring formation in mediterranean regions. Tree rings have been used extensively in temperate regions to reconstruct responses of forests to past environmental changes. In mediterranean regions, studies of tree rings are scarce, despite their potential for understanding and predicting the effects of global change on important ecological processes such as desertification. In mediterranean regions, due to the great spatio-temporal variability of mediterranean environmental conditions, tree rings are sometimes not formed. Often, clear seasonality is lacking, and vegetation activity is not always associated with regular dormancy periods. We present examples of tree-ring morphology of five species (Arbutus unedo, Fraxinus ornus, Quercus cerris, Q. ilex, Q. pubescens) sampled in Tuscany, Italy, focusing on the difficulties we encountered during the dating. We present an interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments. Furthermore, we propose a classification of tree-ring formation in mediterranean environments. Mediterranean tree rings can be dated and used for dendrochronological purposes, but great care should be taken in selecting sampling sites, species and sample trees. [source] |