Mediated Neurotoxicity (mediated + neurotoxicity)

Distribution by Scientific Domains


Selected Abstracts


Differential regulation of NMDA receptor function by DJ-1 and PINK1

AGING CELL, Issue 5 2010
Ning Chang
Summary Dysfunction of PTEN-induced kinase 1 (PINK1) or DJ-1 promotes neuronal death and is implicated in the pathogenesis of Parkinson's disease, but the underlying mechanisms remain unclear. Given the roles of N -methyl- d- aspartate receptor (NMDAr)-mediated neurotoxicity in various brain disorders including cerebral ischemia and neurodegenerative diseases, we investigated the effects of PINK1 and DJ-1 on NMDAr function. Using protein overexpression and knockdown approaches, we showed that PINK1 increased NMDAr-mediated whole-cell currents by enhancing the function of NR2A-containing NMDAr subtype (NR2ACNR). However, DJ-1 decreased NMDAr-mediated currents, which was mediated through the inhibition of both NR2ACNR and NR2B-containing NMDAr subtype (NR2BCNR). We revealed that the knockdown of DJ-1 enhanced PTEN expression, which not only potentiated NR2BCNR function but also increased PINK1 expression that led to NR2ACNR potentiation. These results indicate that NMDAr function is differentially regulated by DJ-1-dependent signal pathways DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR. Our results further showed that the suppression of DJ-1, while promoted NMDA-induced neuronal death through the overactivation of PTEN/NR2BCNR-dependent cell death pathway, induced a neuroprotective effect to counteract DJ-1 dysfunction-mediated neuronal death signaling through activating PTEN/PINK1/NR2ACNR cell survival,promoting pathway. Thus, PINK1 acts with DJ-1 in a common pathway to regulate NMDAr-mediated neuronal death. This study suggests that the DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR pathways may represent potential therapeutic targets for the development of neuroprotection strategy in the treatment of brain injuries and neurodegenerative diseases such as Parkinson's disease. [source]


Chronic exposure to sub-lethal beta-amyloid (A,) inhibits the import of nuclear-encoded proteins to mitochondria in differentiated PC12 cells*

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Daniel Sirk
Abstract Studies on amyloid beta (A,|), the peptide thought to play a crucial role in the pathogenesis of Alzheimer's disease, have implicated mitochondria in A,-mediated neurotoxicity. We used differentiated PC12 cells stably transfected with an inducible green fluorescent protein (GFP) fusion protein containing an N,-terminal mitochondrial targeting sequence (mtGFP), to examine the effects of sub-lethal A, on the import of nuclear-encoded proteins to mitochondria. Exposure to sub-lethal A,25,35 (10 ,mol/L) for 48 h inhibited mtGFP import to mitochondria; average rates decreased by 20 ± 4%. Concomitant with the decline in mtGFP, cytoplasmic mtGFP increased significantly while mtGFP expression and intramitochondrial mtGFP turnover were unchanged. Sub-lethal A,1,42 inhibited mtGFP import and increased cytoplasmic mtGFP but only after 96 h. The import of two endogenous nuclear-encoded mitochondrial proteins, mortalin/mtHsp70 and Tom20 also declined. Prior to the decline in import, mitochondrial membrane potential (mmp), and reactive oxygen species levels were unchanged in A,-treated cells versus reverse phase controls. Sustained periods of decreased import were associated with decreased mmp, increased reactive oxygen species, increased vulnerability to oxygen-glucose deprivation and altered mitochondrial morphology. These findings suggest that an A,-mediated inhibition of mitochondrial protein import, and the consequent mitochondrial impairment, may contribute to Alzheimer's disease. [source]


Amyloid precursor protein-processing products affect mononuclear phagocyte activation: pathways for sAPP- and A,-mediated neurotoxicity

JOURNAL OF NEUROCHEMISTRY, Issue 4 2003
Tsuneya Ikezu
Abstract Increasing evidence strongly supports the role of glial immunity in the pathogenesis of Alzheimer's disease (AD). To investigate such events we have developed cell systems mimicking the interactions between ,-amyloid precursor protein (APP)-expressing neurons and brain mononuclear phagocytes (MP; macrophages and microglia). MP were co-cultured with neuronal cells expressing wild type APP or familial AD-linked APP mutants. The latter was derived from recombinant adenoviral constructs. Neuronal APP processing products induced MP activation, reactive oxygen species, and neurotoxic activities. These occurred without the addition of pro-inflammatory cytokines and were reversed by depletion of amyloid ,-peptide (A,) and secreted APP (sAPP). Neurotoxic activities were diminished by superoxide dismutase mimetics and NMDA receptor inhibitors. Microglial glutamate secretion was suppressed by the cystine-glutamate antiporter inhibitor and its levels paralleled the depletion of sAPP and A, from conditioned media prepared from APP-expressing neurons. The excitotoxins from activated MP were potent enough to evoke recombinant NMDA receptor-mediated inward currents expressed in vitro in the Xenopus oocytes. These results demonstrate that neuronal APP-processing products can induce oxidative neurotoxicity through microglial activation. [source]


The neuroprotective activities of melatonin against the Alzheimer ,-protein are not mediated by melatonin membrane receptors

JOURNAL OF PINEAL RESEARCH, Issue 3 2002
Miguel A. Pappolla
Exposure of neuronal cells to the Alzheimer's amyloid , protein (A,) results in extensive oxidative damage of bio-molecules that are profoundly harmful to neuronal homeostasis. It has been demonstrated that melatonin protects neurons against A, -mediated neurotoxicity, including cell death and a spectrum of oxidative lesions. We undertook the current study to determine whether melatonin membrane receptors are involved in the mechanism of neuroprotection against A, neurotoxicity. For this purpose, we characterized the free-radical scavenging potency of several compounds exhibiting various affinities for melatonin membrane receptors (MLT 1a and 1b). A, -mediated neurotoxicity was assessed in human neuroblastoma cells and in primary hippocampal neurons. In sharp contrast with melatonin, no neuroprotection against A, toxicity was observed when we used melatonin membrane receptor agonists that were devoid of antioxidant activity. In contrast, the cells were fully protected in parallel control experiments when either melatonin, or the structurally unrelated free-radical scavenger phenyl- N - t -butyl nitrone (PBN), were added to A, -containing culture media. This study demonstrates that the neuroprotective properties of melatonin against A, -mediated toxicity does not require binding of melatonin to a membrane receptor and is likely the result of the antioxidant and antiamyloidogenic features of the agent. [source]