Mediated Induction (mediated + induction)

Distribution by Scientific Domains


Selected Abstracts


Smad3 as a mediator of the fibrotic response

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 2 2004
Kathleen C. Flanders
Summary Transforming growth factor-, (TGF-,) plays a central role in fibrosis, contributing to the influx and activation of inflammatory cells, the epithelial to mesenchymal transdifferentiation (EMT) of cells and the influx of fibroblasts and their subsequent elaboration of extracellular matrix. TGF-, signals through transmembrane receptor serine/threonine kinases to activate novel signalling intermediates called Smad proteins, which modulate the transcription of target genes. The use of mice with a targeted deletion of Smad3, one of the two homologous proteins which signals from TGF-,/activin, shows that most of the pro-fibrotic activities of TGF-, are mediated by Smad3. Smad3 null inflammatory cells and fibroblasts do not respond to the chemotactic effects of TGF-, and do not autoinduce TGF-,. The loss of Smad3 also interferes with TGF-,-mediated induction of EMT and genes for collagens, plasminogen activator inhibitor-1 and the tissue inhibitor of metalloprotease-1. Smad3 null mice are resistant to radiation-induced cutaneous fibrosis, bleomycin-induced pulmonary fibrosis, carbon tetrachloride-induced hepatic fibrosis as well as glomerular fibrosis induced by induction of type 1 diabetes with streptozotocin. In fibrotic conditions that are induced by EMT, such as proliferative vitreoretinopathy, ocular capsule injury and glomerulosclerosis resulting from unilateral ureteral obstruction, Smad3 null mice also show an abrogated fibrotic response. Animal models of scleroderma, cystic fibrosis and cirrhosis implicate involvement of Smad3 in the observed fibrosis. Additionally, inhibition of Smad3 by overexpression of the inhibitory Smad7 protein or by treatment with the small molecule, halofuginone, dramatically reduces responses in animal models of kidney, lung, liver and radiation-induced fibrosis. Small moleucule inhibitors of Smad3 may have tremendous clinical potential in the treatment of pathological fibrotic diseases. [source]


Role of nitric oxide in downregulation of cytochrome P450 1a1 and NADPH: Quinone oxidoreductase 1 by tumor necrosis factor-, and lipopolysaccharide

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2007
Negar Gharavi
Abstract We previously demonstrated that tumor necrosis factor alpha (TNF-,) and lipopolysaccharide (LPS) downregulate aryl hydrocarbon receptor (AhR)-regulated genes, such as cytochrome P450 1a1 (Cyp1a1) and NADPH: quinone oxidoreductase 1 (Nqo1) gene expression, yet the mechanisms involved remain unknown. The correlation between the inflammation-mediated suppression of AhR-regulated genes and the TNF-, or LPS-induced nitric oxide (NO) production especially in murine hepatoma Hepa 1c1c7 cells has been questioned; therefore we investigated whether NO is involved in the modulation of Cyp1a1 and Nqo1 by TNF-, or LPS in Hepa 1c1c7 cells. A significant dose-dependent increase in the inducible nitric oxide synthase (NOS2) expression and NO production were observed by various concentrations of TNF-, (1, 5, and 10 ng/mL) and LPS (1 and 5 µg/mL) which was completely inhibited by a NOS2 inhibitor, L-N6-(1-iminoethyl) lysine (L-NIL) (1 mM). Furthermore, TNF-, and LPS significantly induced NOS2 expression. Both TNF-, and LPS repressed the ,-naphthoflavone (,NF)-mediated induction of Cyp1a1 and Nqo1 at mRNA and activity levels. The downregulation of Cyp1a1, but not Nqo1, was significantly prevented by L-NIL. However, proxynitrite decomposer, iron tetrakis (N -methyl-4,-pyridyl) porphyrinato (FeTMPyP) (5 µM) did not affect TNF-,- and LPS-mediated downregulation of Cyp1a1 and Nqo1 at mRNA and activity levels. These results show that NO, but not peroxynitrite, may be involved in TNF-,- and LPS-mediated downregulation of Cyp1a1 without affecting the downregulation of Nqo1. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2795,2807, 2007 [source]


Connective Tissue Growth Factor Promotes Fibrosis Downstream of TGF, and IL-6 in Chronic Cardiac Allograft Rejection

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2010
A. J. Booth
Cardiac transplantation is an effective treatment for multiple types of heart failure refractive to therapy. Although immunosuppressive therapeutics have increased survival rates within the first year posttransplant, chronic rejection (CR) remains a significant barrier to long-term graft survival. Indicators of CR include patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Multiple factors have been implicated in the onset and progression of CR, including TGF,, IL-6 and connective tissue growth factor (CTGF). While associated with CR, the role of CTGF in CR and the factors necessary for CTGF induction in vivo are not understood. To this end, we utilized forced expression and neutralizing antibody approaches. Transduction of allografts with CTGF significantly increased fibrotic tissue development, though not to levels observed with TGF, transduction. Further, intragraft CTGF expression was inhibited by IL-6 neutralization whereas TGF, expression remained unchanged, indicating that IL-6 effects may potentiate TGF,-mediated induction of CTGF. Finally, neutralizing CTGF significantly reduced graft fibrosis without reducing TGF, and IL-6 expression levels. These findings indicate that CTGF functions as a downstream mediator of fibrosis in CR, and that CTGF neutralization may ameliorate fibrosis and hypertrophy associated with CR. [source]


Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein

ARTHRITIS & RHEUMATISM, Issue 7 2010
Fengjin Guo
Objective To determine 1) whether a protein interaction network exists between granulin-epithelin precursor (GEP), ADAMTS-7/ADAMTS-12, and cartilage oligomeric matrix protein (COMP); 2) whether GEP interferes with the interactions between ADAMTS-7/ADAMTS-12 metalloproteinases and COMP substrate, including the cleavage of COMP; 3) whether GEP affects tumor necrosis factor , (TNF,),mediated induction of ADAMTS-7/ADAMTS-12 expression and COMP degradation; and 4) whether GEP levels are altered during the progression of arthritis. Methods Yeast two-hybrid, in vitro glutathione S-transferase pull-down, and coimmunoprecipitation assays were used to 1) examine the interactions between GEP, ADAMTS-7/ADAMTS-12, and COMP, and 2) map the binding sites required for the interactions between GEP and ADAMTS-7/ADAMTS-12. Immunofluorescence cell staining was performed to visualize the subcellular localization of GEP and ADAMTS-7/ADAMTS-12. An in vitro digestion assay was employed to determine whether GEP inhibits ADAMTS-7/ADAMTS-12,mediated digestion of COMP. The role of GEP in inhibiting TNF,-induced ADAMTS-7/ADAMTS-12 expression and COMP degradation in cartilage explants was also analyzed. Results GEP bound directly to ADAMTS-7 and ADAMTS-12 in vitro and in chondrocytes, and the 4 C-terminal thrombospondin motifs of ADAMTS-7/ADAMTS-12 and each granulin unit of GEP mediated their interactions. Additionally, GEP colocalized with ADAMTS-7 and ADAMTS-12 on the cell surface of chondrocytes. More importantly, GEP inhibited COMP degradation by ADAMTS-7/ADAMTS-12 in a dose-dependent manner through 1) competitive inhibition through direct protein,protein interactions with ADAMTS-7/ADAMTS-12 and COMP, and 2) inhibition of TNF,-induced ADAMTS-7/ADAMTS-12 expression. Furthermore, GEP levels were significantly elevated in patients with either osteoarthritis or rheumatoid arthritis. Conclusion Our observations demonstrate a novel protein,protein interaction network between GEP, ADAMTS-7/ADAMTS-12, and COMP. Furthermore, GEP is a novel specific inhibitor of ADAMTS-7/ADAMTS-12,mediated COMP degradation and may play a significant role in preventing the destruction of joint cartilage in arthritis. [source]


Increased expression of interleukin-7 in labial salivary glands of patients with primary Sjögren's syndrome correlates with increased inflammation

ARTHRITIS & RHEUMATISM, Issue 4 2010
A. Bikker
Objective To study the expression levels and immunostimulatory capacities of interleukin-7 (IL-7) in primary Sjögren's syndrome. Methods Labial salivary gland (LSG) IL-7 expression was determined by immunohistochemistry, using a quantitative scoring system, in 30 patients with sicca syndrome: 15 patients with primary Sjögren's syndrome (SS) and 15 patients with non-SS sicca syndrome. The correlation of IL-7 expression in LSGs with parameters of local and peripheral disease was studied, and serum and salivary IL-7 levels were determined. Additionally, the effects of IL-7 on cytokine production by peripheral blood mononuclear cells (PBMCs) from patients with primary SS were determined in vitro by Luminex multicytokine assay and compared with the effects in control subjects. Results The expression of IL-7 in LSGs was higher in patients with primary SS compared with that in patients with non-SS sicca syndrome. IL-7 was observed primarily in the vicinity of lymphocytic infiltrates. Salivary IL-7 levels in patients with primary SS were higher than those in control subjects. In all 30 patients with sicca syndrome, IL-7 expression in LSGs correlated with parameters of both local and peripheral disease. Furthermore, IL-7 stimulated T cell,attracting and T cell,differentiating cytokines (monokine induced by interferon-, [IFN,], IFN,-inducible 10-kd protein, IL-12, and IL-15), as well as Th1 (IFN,), Th2 (IL-4), Th17 (IL-17A), proinflammatory (tumor necrosis factor , and IL-1,), and regulatory (IL-10 and IL-13) cytokine production by PBMCs. All of these cytokines were previously shown to be associated with primary SS. The IL-7,induced increase in IL-10 production in patients with primary SS was reduced compared with that in control subjects. Conclusion The correlation between LSG IL-7 expression and (local) disease parameters in primary SS as well as the IL-7,mediated induction of inflammatory cytokines indicate that IL-7 might contribute to the immunopathology of primary SS. [source]