Home About us Contact | |||
Median Neurosecretory Cells (median + neurosecretory_cell)
Selected AbstractsBrain-derived neurotrophic factor-like neuropeptide is secreted as a neurohormone from specific brain neurons into the corpus allatum in the silkworm Bombyx moriENTOMOLOGICAL RESEARCH, Issue 1 2006Mi Young KIM Abstract The aim of this study was to investigate the secretion of brain-derived neurotrophic factor (BDNF)-like neuropeptide in the silkworm, Bombyx mori , by using immunocytochemical techniques on the brain and retrocerebral complex of fifth instar larvae. In the brain, four pairs of median neurosecretory cell (MNC) bodies and six pairs of lateral neurosecretory cell (LNC) bodies had distinct immunoreactivities to this peptide, suggesting that this peptide is produced from two types of brain neuron. These reactivities were much stronger in the MNC than in the LNC. Labeled MNC projected their axons into the contralateral corpora allata, to which axons of labeled MNC were eventually innervated, through decussation in the median region, contralateral nerve corporis cardiaci I and nerve corpora allata I. Labeled LNC extended their axons into the ipsilateral corpora allata to be innervated through the ipsilateral nerve corporis cardiaci II and nerve corpora allata I. These results suggest that BDNF is secreted as a neurohormone from MNC and LNC of the brain into the corpora allata. [source] DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutritionAGING CELL, Issue 3 2010Susan J. Broughton Summary Dietary restriction extends lifespan in diverse organisms, but the gene regulatory mechanisms and tissues mediating the increased survival are still unclear. Studies in worms and flies have revealed a number of candidate mechanisms, including the target of rapamycin and insulin/IGF-like signalling (IIS) pathways and suggested a specific role for the nervous system in mediating the response. A pair of sensory neurons in Caenorhabditis elegans has been found to specifically mediate DR lifespan extension, but a neuronal focus in the Drosophila nervous system has not yet been identified. We have previously shown that reducing IIS via the partial ablation of median neurosecretory cells in the Drosophila adult brain, which produce three of the seven fly insulin-like peptides, extends lifespan. Here, we show that these cells are required to mediate the response of lifespan to full feeding in a yeast dilution DR regime and that they appear to do so by mechanisms that involve both altered IIS and other endocrine effects. We also present evidence of an interaction between these mNSCs, nutrition and sleep, further emphasising the functional homology between the DILP-producing neurosecretory cells in the Drosophila brain and the hypothalamus of mammals in their roles as integration sites of many inputs for the control of lifespan and behaviour. [source] The pars intercerebralis of the locust brain: A developmental and comparative studyMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002Peter Ludwig Abstract The anterior midline of the brain, also known as the pars intercerebralis, contains the largest collection of neurosecretory cells in the central nervous system of the grasshopper. In this study, we use immunocytochemical, intracellular staining, and histological methods to establish the ontogenies of the various cell types in the brain midline, and show how these cells contribute to the pars intercerebralis of the adult brain. We show that the adult pars intercerebralis develops from three distinct embryonic cell groups: (1) the median neurosecretory cells, which derive from a subset of neuroblasts in the protocerebral hemispheres, and which project axons to the corpora cardiaca; (2) the paired primary commissure pioneers, which derive directly from the mesectoderm of the dorsal median domain and whose axons project to the ventral nerve cord via the midline tract; and (3) the six progeny of the median precursor in the dorsal median domain, which share a common axonal projection with the primary commissure pioneers. Since the adult pars intercerebralis is a fusion product of these independent cellular components, it can only be understood in terms of its origins in the embryonic brain. When the expression pattern of the TERM-1 antigen is compared in subsets of median neurosecretory cells in a wide range of insect orders, the results suggests a common organizational Bauplan for the pars intercerebralis. This hypothesis is supported by the identification of putative homologs of the grasshopper primary commissure pioneers in all these insects. Microsc. Res. Tech. 56:174,188, 2002. © 2002 Wiley-Liss, Inc. [source] |