Home About us Contact | |||
Median Lobe (median + lobe)
Selected AbstractsCytoprotection by bcl-2 gene transfer against ischemic liver injuries together with repressed lipid peroxidation and increased ascorbic acid in livers and serumJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2004Shinobu Yanada Abstract The maximum gene exhibition was shown to be achieved at 48 h after transfection with human bcl-2 (hbcl-2) genes built in an SV40 early promoter-based plasmid vector and HVJ-liposome for cultured rat hepatocytes. The similar procedure of hbcl-2 transfection was therefore conducted for livers in rats via the portal vein, and after 48 h followed by post-ischemic reperfusion (I/R) operation for some hepatic lobes. The I/R-induced hepatic injuries were in situ observed as both cell morphological degeneration and cellular DNA strand cleavages around capillary vessels of the ischemic liver lobes as detected by HE stain and TUNEL assay, and were biochemically observed as release of two hepatic marker enzymes AST and ALT into serum. All the I/R-induced injuries examined were appreciably repressed for rats transfected with hbcl-2; hbcl-2 was expressed in hepatocytes around the capillaries of ischemic regions such as the median lobe and the left lobe, but scarcely around those of non-ischemic regions. Thus cytoprotection against I/R-induced injuries may be attributed to the I/R-promoted expression of transferred hbcl-2 genes. The possibility was examined firstly by methylphenylindole method, which showed that I/R-enhanced lipid peroxidation in the reference vector-transfected livers were markedly repressed in the hbcl-2 -transfected livers. Contents of ascorbic acid (Asc) in serum and livers of hbcl-2 -transfected rats were enriched, unexpectedly, versus those of non-transfected rats, and were as abundant as 1.90-fold and 1.95- to 2.60-fold versus those in the pre-ischemic state, respectively. After I/R, an immediate decline in serum Asc occurred in hbcl-2 -transfectants, and was followed by prompt restoration up to the pre-ischemic Asc levels in contrast to the unaltered lower Asc levels in non-transfectants except a transient delayed increase. Hepatic Asc contents were also diminished appreciably at the initial stage after I/R in the ischemic lobes of hbcl-2 -transfectants, which however retained more abundant Asc versus non-transfectants especially at the initial I/R stage when scavenging of the oxidative stress should be most necessary for cytoprotection. The results showed a close correlation between cytoprotection by exogenously transferred hbcl-2 and repressive effects on the lipid peroxidation associated with Asc consumption or redistribution. © 2004 Wiley-Liss, Inc. [source] Median liver lobe of woodchuck as a model to study hepatic outflow obstruction: a pilot studyLIVER INTERNATIONAL, Issue 9 2008Uta Dahmen Abstract Background: Hepatic vein outflow obstruction represents an important clinical problem in living-liver transplantation. An animal model is required to study the influence of outflow obstruction on the intrahepatic regulation of liver perfusion and the subsequent effects on liver injury and recovery during liver regeneration. The size of woodchucks enables the use of standard clinical imaging procedures. Aim: This study aims at describing hepatic vascular and territorial anatomy of the woodchuck liver based on a virtual three-dimensional (3D) visualization of the hepatic vascular tree. Methods: Woodchucks (n=6) were subjected to an all-in-one computed tomography (CT) after contrasting the vascular and the biliary tree. CT-images were used for 3D-reconstruction of hepatic and portal veins and calculation of the corresponding portal and hepatic vein territories and their respective volume using hepavision (MeVisLab). A virtual resection was performed following the Cantlie-line and territories at risk were calculated. Results: The median lobe of the woodchuck liver has a similar vascular supply and drainage as the human liver with two portal (right and left median portal vein) and three hepatic veins (left, middle and right median hepatic vein). The corresponding portal and hepatic vein subterritories are of a similar relative size compared with the human liver. Virtual splitting of the median lobe of the woodchuck liver revealed areas at risk of focal outflow obstruction, as observed clinically. Conclusion: The median liver lobe of the woodchuck represents, to a small extent, the hepatic vascular anatomy of the human liver and is therefore a suitable potential model to correlate repeated imaging of impaired liver perfusion with histomorphological findings of liver damage and regeneration. [source] Enhanced expression of B7-1, B7-2, and intercellular adhesion molecule 1 in sinusoidal endothelial cells by warm ischemia/reperfusion injury in rat liverHEPATOLOGY, Issue 4 2001Naosuke Kojima To elucidate a role of costimulatory molecule and cell adhesion molecule in hepatic ischemia/reperfusion injury, we examined an alteration in B7-1 (CD80), B7-2 (CD86), and intercellular adhesion molecule 1 (ICAM-1; CD54) expression in the rat liver after warm ischemia/reperfusion injury. To induce hepatic warm ischemia in a rat model, both portal vein and hepatic artery entering the left-lateral and median lobes were occluded by clamping for 30 minutes or 60 minutes, and then reperfused for 24 hours. B7-1, B7-2, and ICAM-1 expressions in the liver were analyzed by immunofluorescence staining and real-time reverse transcription polymerase chain reaction (RT-PCR). Although B7-1 and B7-2 expressions were at very low levels in the liver tissues from normal or sham-operated control rats, both B7-1 and B7-2 expressions were enhanced at protein and messenger RNA (mRNA) levels in the affected, left lobes after warm ischemia/reperfusion. ICAM-1 protein and mRNA were constitutively expressed in the liver of normal and sham-operated control rats, and further up-regulated after warm ischemia/reperfusion. Localization of increased B7-1, B7-2, and ICAM-1 proteins, as well as von Willebrand factor as a marker protein for endothelial cells, was confined by immunofluorescence staining to sinusoidal endothelial cells in hepatic lobules. Data from quantitative real-time RT-PCR analysis revealed that B7-1 and B7-2 mRNA levels were elevated in hepatic lobes after warm ischemia/reperfusion (5.13- and 52.9-fold increase, respectively), whereas ICAM-1 mRNA expression was rather constitutive but further enhanced by warm ischemia/reperfusion (4.24-fold increase). These results suggest that hepatic sinusoidal endothelial cells play a pivotal role as antigen-presenting cells by expressing B7-1 and B7-2 in warm hepatic ischemia/reperfusion injury, and that B7-1 and/or B7-2 might be the primary target to prevent early rejection and inflammatory reactions after hepatic ischemia/reperfusion injury associated with liver transplantation. [source] Gene expression profile analysis of regenerating liver after portal vein ligation in rats by a cDNA microarray systemLIVER INTERNATIONAL, Issue 3 2004Y Nagano Abstract: Aims: We assessed changes in gene expression of hypertrophied liver after portal vein ligation (PL) in a test group of rats compared to a control group, which had the same size liver but no PL. Methods: The portal veins of the left and median lobes in the test group were ligated in an initial operation. Four days after the PL, the liver volume of the posterior caudate lobe (5%) increased two-fold and comprised 10% of the liver. A 90% hepatectomy was then performed, leaving only the hypertrophied posterior caudate lobe, and leaving the normal anterior and posterior caudate lobes (10%) in the control (sham) group. A comparison of the expression profiles between two groups was performed using cDNA microarrays and the hepatic ATP level was measured. Results: The survival rate for the PL group was significantly higher than for the sham group at 4 days after the hepatectomy (56.3% and 26.7%, P<0.05). Gene expression of cyclin D1, proliferating cell nuclear antigen, cyclin A and B was upregulated, and the cyclin-dependent kinase inhibitor was downregulated. Increases were observed in: (i) pyruvate dehydrogenase, the tricarboxylic acid cycle cycle regulator, (ii) acyl-CoA dehydrogenase, the oxidation regulator, and (iii) cytochrome oxidases, the oxidative phosphorylation regulator. Hepatic ATP concentration after hepatectomy was better maintained in the PL group than in the sham group (0.48±0.01 ,mol/ml vs. 0.33±0.01 ,mol/ml, P<0.05). Conclusion: The regenerating liver increased tolerance for extended hepatectomy compared to normal liver. It is believed that this is because the induced rapid regeneration of the remaining liver after hepatectomy increases ATP metabolism. [source] |