Median Inhibitory Concentration (median + inhibitory_concentration)

Distribution by Scientific Domains


Selected Abstracts


Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta, and Onychiurus folsomi) and lettuce (Lactuca sativa)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2010
Matthew Dodd
Abstract Experiments were conducted to assess the toxicity of methyl tert butyl ether (MTBE) to three species of Collembola (Proisotoma minuta, Folsomia candida, and Onychiurus folsomi) and lettuce (Lactuca sativa L.) using an artificial Organization for Economic Cooperation and Development (OECD) soil and field-collected sandy loam and silt loam soil samples. Soil invertebrate tests were carried out in airtight vials to prevent volatilization of MTBE out of the test units and to allow for direct head-space sampling and gas chromatography-mass spectrometry (GC-MS) analysis for residual MTBE. The use of the airtight vial protocol proved to be very successful, in that the measured MTBE concentrations at the beginning of the experiments were within 95% of nominal concentrations. The test methods used in this study could be used to test the toxicity of other volatile organic compounds to Collembola. The soil invertebrates tested had inhibitory concentration (ICx) and lethal concentration (LCx) values that ranged from 242 to 844 mg MTBE/kg dry soil. When the three test species of Collembola were tested under identical conditions in the artificial OECD soil, O. folsomi was the most sensitive collembolan, with a median inhibitory concentration (IC50; reproduction) of 296 mg MTBE/kg dry soil. The most sensitive endpoint for lettuce was an IC50 for root length of 81 mg MTBE/kg dry soil after 5 d of germination in OECD soil. Data on the loss of MTBE from the three test soils over time indicated that MTBE was retained in the silt loam soil longer than in either the sandy loam or the artificial OECD soil. Environ. Toxicol. Chem. 2010;29:338,346. © 2009 SETAC [source]


A short-term sublethal in situ toxicity assay with hediste diversicolor (polychaeta) for estuarine sediments based on postexposure feeding

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2005
Susana Maria Moreira
Abstract This study evaluated a short-term sublethal endpoint for in situ toxicity assays for estuarine sediments, based on postexposure feeding of the polychaete Hediste (Nereis) diversicolor Müller. A method for precisely quantifying postexposure feeding rates of H. diversicolor was established under laboratory conditions using Artemia franciscana Kellog nauplii. The sensitivity of the postexposure feeding response to copper was investigated by comparing postexposure feeding rates to growth and lethality. The 48-h and 96-h median lethal concentration (LC50) of copper were 241 and 125 ,g/L, respectively, whereas the 48-h median inhibitory concentration (IC50) for postexposure feeding and the 20-d IC50 for growth were 52 and 25 ,g/L of copper, respectively. The influence of different exposure conditions (substrate, temperature, salinity, food availability, and light) on H. diversicolor postexposure feeding was assessed; temperature and salinity were found to influence significantly postexposure feeding. The effectiveness of the proposed in situ assay was investigated by deploying it at two reference and six contaminated Portuguese estuaries. A 48-h exposure period was followed by a 1-h postexposure feeding period. High organism recoveries (89,100%) were obtained. Postexposure feeding was depressed significantly (17,90%) at all contaminated sites relatively to reference sites. The proposed in situ assay with H. diversicolor was shown to be a potential useful tool for estuarine sediment toxicity testing. [source]


The Anticonvulsant SGB-017 (ADCI) Blocks Voltage-Gated Sodium Channels in Rat and Human Neurons: Comparison with Carbamazepine

EPILEPSIA, Issue 3 2000
Lucy Sun
Summary: Purpose: SGB-017 (ADCI) is a novel anticonvul-sant that blocks both voltage-activated sodium channels and N -methyl- d -aspartate (NMDA)-receptor-gated channels. Results by Rogawski et al. suggested that SGB-017 produces its anticonvulsant action primarily by inhibition of NMDA-receptor channels. However, SGB-017 is effective in several animal models of epilepsy that are unresponsive to NMDA antagonists. These results indicate that block of NMDA-receptor channels is not the only mechanism contributing to its anticonvulsant activity. Thus the effects of SGB-017 on neu-ronal sodium channels were investigated. Methods: Whole cell voltage-clamp techniques were used to record sodium currents in freshly dissociated rat superior cervical ganglion (SCG) and hippocampal neurons and cultured human NT2 neurons. The effects of SGB-017 on the amplitude of sodium currents, elicited by a depolarizing pulse to 0 mV from different holding potentials, were measured and compared with those of carbamazepine (CBZ). Results: SGB-017 inhibited sodium currents in rat SCG and hippocampal neurons with a similar potency to CBZ. Like CBZ, the inhibition of sodium channels by SGB-017 was voltage dependent. Its median inhibitory concentration (IC50) for inhibition of sodium channels at depolarized holding potentials is similar to that for its inhibition of NMDA receptor channels. In human hNT2 neurons, SGB-017 was more potent than CBZ at inhibiting sodium currents. Conclusions: SGB-017 produces its anticonvulsant activity by blocking both sodium- and NMDA-receptor channels in a voltage- and use-dependent manner. The combination of these two mechanisms of action makes SGB-017 an effective AED in several different animal models of epilepsy. [source]


Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities

FEBS JOURNAL, Issue 9 2000
Jackie D. Corbin
In addition to its cGMP-selective catalytic site, cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains two allosteric cGMP-binding sites and at least one phosphorylation site (Ser92) on each subunit [Thomas, M.K., Francis, S.H. & Corbin, J.D. (1990) J. Biol. Chem.265, 14971,14978]. In the present study, prior incubation of recombinant bovine PDE5 with a phosphorylation reaction mixture [cGMP-dependent protein kinase (PKG) or catalytic subunit of cAMP-dependent protein kinase (PKA), MgATP, cGMP, 3-isobutyl-1-methylxanthine], shown earlier to produce Ser92 phosphorylation, caused a 50,70% increase in enzyme activity and also increased the affinity of cGMP binding to the allosteric cGMP-binding sites. Both effects were associated with increases in its phosphate content up to 0.6 mol per PDE5 subunit. Omission of any one of the preincubation components caused loss of stimulation of catalytic activity. Addition of the phosphorylation reaction mixture to a crude bovine lung extract, which contains PDE5, also produced a significant increase in cGMP PDE catalytic activity. The increase in recombinant PDE5 catalytic activity brought about by phosphorylation was time-dependent and was obtained with 0.2,0.5 ,m PKG subunit, which is approximately the cellular level of this enzyme in vascular smooth muscle. Significantly greater stimulation was observed using cGMP substrate concentrations below the Km value for PDE5, although stimulation was also seen at high cGMP concentrations. Considerably higher concentration of the catalytic subunit of PKA than of PKG was required for activation. There was no detectable difference between phosphorylated and unphosphorylated PDE5 in median inhibitory concentration for the PDE5 inhibitors, sildenafil, or zaprinast 3-isobutyl-1-methylxanthine. Phosphorylation reduced the cGMP concentration required for half-maximum binding to the allosteric cGMP-binding sites from 0.13 to 0.03 ,m. The mechanism by which phosphorylation of PDE5 by PKG could be involved in physiological negative-feedback regulation of cGMP levels is discussed. [source]


HCV796: A selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity In Vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus,

HEPATOLOGY, Issue 3 2009
Norman M. Kneteman
Anti-hepatitis C virus (HCV) drug development has been challenged by a lack of experience with inhibitors inclusive of in vitro, animal model, and clinical study. This manuscript outlines activity and correlation across such a spectrum of models and into clinical trials with a novel selective nonstructural protein 5B (NS5B) polymerase inhibitor, HCV796. Enzyme assays yielded median inhibitory concentration (IC50) values of 0.01 to 0.14 ,M for genotype 1, with half maximal effective concentration (EC50s) of 5 nM and 9 nM against genotype 1a and 1b replicons. In the chimeric mouse model, a 2.02 ± 0.55 log reduction in HCV titer was seen with monotherapy, whereas a suboptimal dose of 30 mg/kg three times per day in combination with interferon demonstrated a 2.44 log reduction (P = 0.001 versus interferon alone) Clinical outcomes in combination with pegylated interferon and ribavirin have revealed additive efficacy in treatment naïve patients. Abnormal liver function test results were observed in 8% of HCV-796 patients treated for over 8 weeks, resulting in suspension of further trial activity. Conclusion: The RNA-dependent RNA polymerase inhibitor HCV796 demonstrated potent anti-HCV activity consistently through enzyme inhibition assays, subgenomic replicon, and chimeric mouse studies. Strong correlations of outcomes in the mouse model were seen with subsequent clinical trials, including a plateau in dose-related antiviral activity and additive impact from combination therapy with interferon. These outcomes demonstrate the utility of the range of in vitro and in vivo models now available for anti-HCV drug development and support the potential utility of polymerase inhibitors in future combination therapies for HCV treatment. (HEPATOLOGY 2009.) [source]