Medial Tibial Plateau (medial + tibial_plateau)

Distribution by Scientific Domains


Selected Abstracts


Evaluation of a magnetic resonance biomarker of osteoarthritis disease progression: doxycycline slows tibial cartilage loss in the Dunkin Hartley guinea pig

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 2 2009
Jonathan Bowyer
Summary The objective was to assess the effect of doxycycline treatment on a magnetic resonance imaging (MRI) biomarker of cartilage volume loss, and on matrix metalloproteinase (MMP) activity in a guinea pig osteoarthritis model. Guinea pigs (9 months old) were dosed with vehicle or doxycycline, 0.6, 3.0 mg/kg/day for 66 days. Fat-suppressed 3D gradient-echo MRI of the left knee was acquired pre- and post dosing. Change in medial tibial plateau (MTP) cartilage volume (MT.VC) was determined using image analysis. At termination, MTP cartilage was removed from knees and proteolytic MMP activity determined using a fluorescent peptide substrate assay. Vehicle-treated animals lost 20.5% (95% CI mean 25.6,15.1) MT.VC. The doxycycline (0.6 mg/kg/day) group lost 8.6% (P < 0.05, 95% CI 20.6 to ,5.3) whilst the 3.0 mg/kg/day group lost 10.0% (P < 0.05, 95% CI 13.9,6.0%). Endogenous levels of active MMPs were below limits of detection in all samples. However, doxycycline treatment ablated amino phenyl mercuric acid activated MMP-13 and MMP-8 levels, reduced MMP-9 levels by 65% and MMP-1 levels by 24%. Doxycycline treatment resulted in partial protection from MT.VC loss and was associated with complete reduction in MMP-13 and MMP-8, and partial reduction in MMP-9 activity. These data imply a role of MMPs in cartilage degeneration but incomplete protection suggests that additional doxycycline insensitive mechanisms are important in this model. The protective effect of doxycycline correlates with the clinical finding of lessened joint space narrowing, strengthens the utility of this animal model in identifying disease-modifying osteoarthritic drugs and supports the use of MRI biomarkers of cartilage loss. [source]


Replacement of the medial tibial plateau by a metallic implant in a goat model

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2010
Roel J.H. Custers
Abstract The purposes of the present study were to explore the surgical possibilities for replacement of the medial tibial plateau by a metallic implant in a large animal model and to examine the implications for the opposing cartilage. In six goats, the medial tibial plateau of the right knee was replaced by a cobalt,chromium implant, using polymethylmethacrylate bone cement for fixation. The unoperated left knee served as a control. At 26 weeks after surgery, the animals were killed, and the joints evaluated macroscopically. Cartilage quality was analyzed macroscopically and histologically. Glycosaminoglycan content, synthesis, and release were measured in tissue and medium. All animals were able to move and load the knees without any limitations. Macroscopic articular evaluation scores showed worsening 26 weeks after inserting the implant (p,<,0.05). Macroscopic and histologic scores showed more cartilage degeneration of the opposing medial femoral condyle in the experimental knee compared to the control knee (p,<,0.05). Higher glycosaminoglycan synthesis was measured at the medial femoral condyle cartilage in the experimental knees (p,<,0.05). This study shows that the medial tibial plateau can be successfully replaced by a cobalt,chromium implant in a large animal model. However, considerable femoral cartilage degeneration of the medial femoral condyle was induced, suggesting that care must be taken introducing hemiarthroplasty devices in a human clinical setting for the treatment of postmeniscectomy cartilage degeneration of the medial tibial plateau. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:429,435, 2010 [source]


Synovial fluid biomarker levels predict articular cartilage damage following complete medial meniscectomy in the canine knee

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2002
Cathy S. Carlson
The purposes of this study were to document the histological changes present in the tibial plateaus 12 weeks after complete medial meniscectomy in dogs and to determine if synovial lavage fluid biomarker levels are predictive of the severity of joint damage. Twelve adult dogs underwent complete unilateral medial meniscectomy and synovial lavage fluid biomarker levels, including cartilage oligomeric matrix protein (COMP), keratan sulfate (5D4), 3B3(,), and 3B3(+), were measured serially at 4-week intervals. The dogs were euthanized 12 weeks after surgery and each medial and lateral tibial plateau from the meniscectomized and contralateral knees was graded histologically. Histological data were analyzed using principal components analysis, which resulted in 4 factors that explained 70% of the variation in the data. Factor 2 (weighted most heavily by subchondral bone thickness) and Factor 3 (representative of articular cartilage damage) were significantly affected by compartmental site (P < 0.01 for both). Both of these factors were highest in the medial tibial plateau of the meniscectomized knee, and Factor 3 was significantly higher in this site than in the medial tibial plateau of the contralateral knee (P < 0.01). Peak levels of all 4 synovial lavage fluid biomarkers occurred at 4 weeks post-meniscectomy and 4-week minus baseline levels of all biomarkers were significantly correlated with the Factor 3 scores. This study demonstrates that significant articular cartilage damage occurs relatively quickly following complete medial meniscectomy in dogs and establishes the content and criterion validity for these synovial fluid lavage biomarkers in canine meniscectomy as surrogate measures of articular cartilage damage. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression,

ARTHRITIS & RHEUMATISM, Issue 12 2009
Virginia Byers Kraus
Objective To evaluate the effectiveness of using subchondral bone texture observed on a radiograph taken at baseline to predict progression of knee osteoarthritis (OA) over a 3-year period. Methods A total of 138 participants in the Prediction of Osteoarthritis Progression study were evaluated at baseline and after 3 years. Fractal signature analysis (FSA) of the medial subchondral tibial plateau was performed on fixed flexion radiographs of 248 nonreplaced knees, using a commercially available software tool. OA progression was defined as a change in joint space narrowing (JSN) or osteophyte formation of 1 grade according to a standardized knee atlas. Statistical analysis of fractal signatures was performed using a new model based on correlating the overall shape of a fractal dimension curve with radius. Results Fractal signature of the medial tibial plateau at baseline was predictive of medial knee JSN progression (area under the curve [AUC] 0.75, of a receiver operating characteristic curve) but was not predictive of osteophyte formation or progression of JSN in the lateral compartment. Traditional covariates (age, sex, body mass index, knee pain), general bone mineral content, and joint space width at baseline were no more effective than random variables for predicting OA progression (AUC 0.52,0.58). The predictive model with maximum effectiveness combined fractal signature at baseline, knee alignment, traditional covariates, and bone mineral content (AUC 0.79). Conclusion We identified a prognostic marker of OA that is readily extracted from a plain radiograph using FSA. Although the method needs to be validated in a second cohort, our results indicate that the global shape approach to analyzing these data is a potentially efficient means of identifying individuals at risk of knee OA progression. [source]


Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology

ARTHRITIS & RHEUMATISM, Issue 9 2008
Kim L. Bennell
Objective Knee osteoarthritis (OA) is an organ-level failure of the joint involving pathologic changes in articular cartilage and bone. This cross-sectional study compared apparent volumetric bone mineral density (vBMD) of proximal tibial subchondral trabecular bone in people with and without knee OA, using peripheral quantitative computed tomography (pQCT). Methods Seventy-five individuals with mild or moderate medial compartment knee OA and 41 asymptomatic controls were recruited. Peripheral QCT was used to measure vBMD of trabecular bone beneath medial and lateral tibiofemoral compartments at levels of 2% and 4% of tibial length, distal to the tibial plateau. Results There was no significant difference in vBMD beneath the overall medial and lateral compartments between the 3 groups. However, in the affected medial compartment of those with moderate OA, lower vBMD was seen in the 2 posterior subregions compared with controls and those with mild knee OA, while higher vBMD was seen in the anteromedial subregion. Beneath the unaffected or lesser affected lateral compartment, significantly lower vBMD was seen at the 2% level in the anterior and lateral subregions of those with moderate disease. Volumetric BMD ratios showed relatively higher vBMD in the medial compartment compared with the lateral compartment, but these ratios were not influenced by disease status. Conclusion Subregional vBMD changes were evident beneath the medial and lateral compartments of those with moderate medial knee OA. Of import, the posterior subchondral trabecular regions of the medial tibial plateau have markedly lower vBMD. [source]