Home About us Contact | |||
Medial Amygdala (medial + amygdala)
Selected AbstractsA direct main olfactory bulb projection to the ,vomeronasal' amygdala in female mice selectively responds to volatile pheromones from malesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009Ningdong Kang Abstract The main olfactory system, like the accessory olfactory system, responds to pheromones involved in social communication. Whereas pheromones detected by the accessory system are transmitted to the hypothalamus via the medial (,vomeronasal') amygdala, the pathway by which pheromones are detected and transmitted by the main system is not well understood. We examined in female mice whether a direct projection from mitral/tufted (M/T) cells in the main olfactory bulb (MOB) to the medial amygdala exists, and whether medial amygdala-projecting M/T cells are activated by volatile urinary odors from conspecifics or a predator (cat). Simultaneous anterograde tracing using Phaseolus vulgaris leucoagglutinin and Fluoro-Ruby placed in the MOB and accessory olfactory bulb (AOB), respectively, revealed that axons of MOB M/T cells projected to superficial laminae of layer Ia in anterior and posterodorsal subdivisions of the medial amygdala, whereas projection neurons from the AOB sent axons to non-overlapping, deeper layer Ia laminae of the same subdivisions. Placement of the retrograde tracer cholera toxin B into the medial amygdala labeled M/T cells that were concentrated in the ventral MOB. Urinary volatiles from male mice, but not from female conspecifics or cat, induced Fos in medial amygdala-projecting MOB M/T cells of female subjects, suggesting that information about male odors is transmitted directly from the MOB to the ,vomeronasal' amygdala. The presence of a direct MOB-to-medial amygdala pathway in mice and other mammals could enable volatile, opposite-sex pheromones to gain privileged access to diencephalic structures that control mate recognition and reproduction. [source] Chemosensory and steroid-responsive regions of the medial amygdala regulate distinct aspects of opposite-sex odor preference in male Syrian hamstersEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006Pamela M. Maras Abstract In rodent species, such as the Syrian hamster, the expression of sexual preference requires neural integration of social chemosensory signals and steroid hormone cues. Although anatomical data suggest that separate pathways within the nervous system process these two signals, the functional significance of this separation is not well understood. Specifically, within the medial amygdala, the anterior region (MEa) receives input from the olfactory bulbs and other chemosensory areas, whereas the posterodorsal region (MEpd) contains a dense population of steroid receptors and receives less substantial chemosensory input. Consequently, the MEa may subserve a primarily discriminative function, whereas the MEpd may mediate the permissive effects of sex steroids on sexual preference. To test these hypotheses, we measured preference and attraction to female and male odors in males with lesions of either the MEa or MEpd. In Experiment 1, lesions of either region eliminated opposite-sex odor preferences. Importantly, MEpd-lesioned males displayed decreased attraction toward female odors, suggesting decreased sexual motivation. In contrast, MEa-lesioned males displayed high levels of investigation of both male and female odors, suggesting an inability to categorize the relevance of the odor stimuli. In Experiment 2, we verified that both MEa- and MEpd-lesioned males could discriminate between female and male odors, thereby eliminating the possibility that the observed lack of preference reflected a sensory deficit. Taken together, these results suggest that both the MEa and MEpd are critical for the expression of opposite-sex odor preference, although they appear to mediate distinct aspects of this behavior. [source] Forebrain projections to the hypothalamus are topographically organized in anurans: conservative traits as compared with amniotesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005Nerea Moreno Abstract The organization of the forebrain in amphibians (anamniotes) is currently being re-evaluated in terms of evolution and several evidences have corroborated numerous traits shared by amphibians and amniotes, such as the organization of the basal ganglia and the amygdaloid complex. In the present study we have analysed the organization of forebrain afferent systems to the hypothalamus of the frog Rana perezi. In vivo and in vitro tract-tracing techniques with dextran amines and immunohistochemistry for localizing nitric oxide synthase (NOS) in a series of single or combined experiments were used as NOS labelling reveals hypothalamic afferents arising from the lateral amygdala and the combination allowed analysis of the relationship between fibers of different origins in the same section. The results showed a large segregation of afferents in the hypothalamic region depending on their site of origin in the forebrain. Four highly topographically organized prosencephalic tracts reaching the anuran hypothalamus were observed: (i) the medial forebrain bundle, from the medial pallium and septal complex; (ii) the caudal branch of the stria terminalis formed by fibers arising in the lateral and medial amygdala; (iii) part of the lateral forebrain bundle with fibers from the central amygdala and (iv) the dorsal thalamo-hypothalamic tract. Fibers coursing in each tract reach the hypothalamus and terminate in distinct fields. The resemblance in pattern of forebrain-hypothalamic organization between amphibians and amniotes suggests that this feature represents an important trait conserved in the evolution of all tetrapods and therefore essential for the hypothalamic function. [source] 18F-Labelled vorozole analogues as PET tracer for aromataseJOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 5 2008Maria Erlandsson Abstract One- and two-step syntheses for the 18F-labelling of 6-[(S)-(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1-(2-[18F]fluoroethyl)-1H -benzotriazole, [18F]FVOZ, 1 and 6-[(S)-(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1-[2-(2-[18F]fluoroethoxy)ethyl]-1H -benzotriazole, [18F]FVOO, 2 were developed. In the two-step synthesis, the nucleophilic fluorination step was performed by reacting (S)-6-[(4-chlorophenyl)-(1H -1,2,4-triazol-1-yl)methyl]-1H -benzotriazole (VOZ) with either the 18F-labelled ethane-1,2-diyl bis(4-methylbenzenesulfonate) or the oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate). The radiochemical yields were in the range of 9,13% after the 110,120,min total syntheses and the specific radioactivities were 175±7,GBq/µmol and 56,GBq/µmol for compounds 1 and 2, respectively. In the one-step synthesis, the precursor 2-{6-[(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1H -1,2,3-benzotriazol-1-yl}ethyl 4-methylbenzenesulfonate (7) or 1-[2-(2-bromoethoxy)ethyl]-6-[(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1H -benzotriazole (8) was directly labelled via an 18F nucleophilic substitution to give the corresponding tracer. The labelled compounds were obtained in 36,99% radiochemical yield after 75-min syntheses. The specific radioactivities are 100,GBq/µmol for compound 1 and 80,GBq/µmol for compound 2. In vitro autoradiography using frozen rat brains illustrated specific binding in the medial amygdala, the bed nucleus of stria terminalis and the preoptic area, all of which corresponded well to the result of 11C-labelled vorozole. Copyright © 2008 John Wiley & Sons, Ltd. [source] Noradrenergic Nuclei that Receive Sensory Input During Mating and Project to the Ventromedial Hypothalamus Play a Role in Mating-Induced Pseudopregnancy in the Female RatJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2010L. E. Northrop In female rats, vaginal-cervical stimulation (VCS) received during mating induces bicircadian prolactin surges that are required for the maintenance of pregnancy or pseudopregnancy (PSP). The neural circuits that transmit VCS inputs to the brain have not been fully described, although mating stimulation is known to activate medullary noradrenergic cell groups that project to the forebrain. In response to VCS, these neurones release noradrenaline within the ventrolateral division of the ventromedial hypothalamus (VMHvl) and the posterodorsal medial amygdala (MePD), two forebrain sites that are implicated in the initiation of PSP. Noradrenaline receptor activation within the VMHvl is both necessary and sufficient for PSP induction, suggesting that noradrenaline acting within the VMHvl is particularly important in mediating the effects of VCS towards the establishment of PSP. We therefore investigated whether or not endogenous, VCS-induced noradrenaline release within the VMHvl is involved in PSP induction in the rat. Before the receipt of sufficient mating stimulation to induce PSP, a retrograde neurotoxin, dopamine-,-hydroxylase-saporin (DBH-SAP), was infused bilaterally into the either the VMHvl or the MePD to selectively destroy afferent noradrenergic nuclei in the brainstem. DBH-SAP infusions into the VMHvl lesioned mating-responsive noradrenergic neurones in A1 and A2 medullary nuclei and reduced the incidence of PSP by 50%. Infusions of DBH-SAP into the MePD had no effect on the subsequent induction of PSP. These results suggest that VCS is conveyed to mating-responsive forebrain areas by brainstem noradrenergic neurones, and that the activity of noradrenergic cells projecting to the VMHvl is involved in the induction of PSP. [source] In Three Brain Regions Central to Maternal Behaviour, Neither Male Nor Female Phodopus Dwarf Hamsters Show Changes in Oestrogen Receptor Alpha Distribution with Mating or ParenthoodJOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2008M. E. Timonin Oestrogen receptor (ER), immunoreactivity in three brain regions relevant to maternal behaviour (medial preoptic area, bed nucleus of the stria terminalis and medial amygdala) was measured in two species of dwarf hamster that both mate during a postpartum oestrous but differ in expression of paternal behaviour. Male and female Phodopus campbelli and Phodopus sungorus were sampled as sexually naïve adults, following mating to satiety, and as new parents. In all brain regions, females expressed higher levels of ER, than males. Species did not have an effect on ER, distribution except in the medial amygdala, where P. sungorus females had higher expression levels than all other groups. Behavioural status was not associated with altered ER, expression. These results were not expected for females and suggest that a primary activational role for oestrogen, acting through ER, in these regions, does not generalise to maternal behaviour in Phodopus. In males, these results are consistent with previous manipulations of the ER, ligand, oestrogen, and suggest that paternal behaviour in P. campbelli is likely to be regulated by developmental effects of oestrogen on the brain during early life (similar to Microtus ochrogaster), rather than through activation by oestrogen at the time of fatherhood (similar to Peromyscus californicus). [source] Comparative Analysis of Immunoreactive Cells for Androgen Receptors and Oestrogen Receptor , in Copulating and Non-Copulating Male RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2006W. Portillo Abstract In some species, including gerbils, guinea pigs, mice, rams and rats, some apparently normal males fail to mate. These kinds of animals have been named ,noncopulating (NC)'. The cause of this behavioural deficit is unknown. The present study aimed to determine whether NC male rats have alterations in the amount of androgen (AR) and oestrogen receptor , (ER,) in a neuronal circuit important for the control of male sexual behaviour; the vomeronasal projection pathway. We evaluated the number of AR and ER, immunoreactive (AR-IR and ER,-IR) cells in the accessory olfactory bulb (AOB), the bed nucleus of the stria terminalis (BNST), the anterior-dorsal medial amygdala (MeAD), the posterior dorsal amygdala (MePD) and the medial preoptic area (MPOA). The results demonstrate that the number of AR-IR cells in NC males was significantly higher compared to copulating (C) males in the MePD, but no significant differences were found in any of the other structures analysed. ER,-IR cells were more abundant in NC than in C males in the MeAD and the MePD. However, in the MPOA the number of ER,-IR cells was significantly reduced in NC males. No significant differences were found in the AOB or in the BNST. A similar pattern of results was observed when regions within these structures that are activated by Fos expression, on mating or exposure to sexually relevant cues were analysed. The differences in the number of AR and ER in particular brain areas could be associated with alterations in sexual behaviour as well as partner and olfactory preference for receptive females seen in NC male rats. [source] Response to Male Odours in Progestin Receptor- and Oestrogen Receptor-Containing Cells in Female Rat BrainJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2002A. L. Bennett Abstract Sensory cues from male rats, such as odours and vaginal-cervical stimulation (VCS), play a modulatory role in female rat sexual behaviour. For example, exposure to male odours and VCS appears to be at least partially responsible for increases in sexual behaviour following repeated mating of oestradiol-primed female rats. Although there is evidence that VCS influences sexual behaviour via a ligand-independent progestin receptor (PR)-dependent mechanism, the mechanism by which odours influence sexual behaviour is not known. We tested the hypothesis that, similar to VCS, the effects of male odours on sexual behaviour are mediated by progestin receptors. Female rats were injected with the progestin antagonist, RU486, or oil vehicle and were then exposed to male-soiled bedding or clean bedding. Although exposure to male-soiled bedding resulted in higher levels of Fos immunoreactivity in brain areas associated with female sexual behaviour, the progestin antagonist did not reduce this effect. Furthermore, there was minimal coexpression of odour-induced Fos and progestin receptors in brain areas associated with female sexual behaviour. Together, these results suggest that the effects of male odours are not mediated by a PR-dependent mechanism. Therefore, we tested the hypothesis that oestrogen receptor (ER)-containing cells are involved in the effects of olfactory cues. Although there was virtually no coexpression of ER, and odour-induced Fos in brain areas associated with female sexual behaviour, exposure to male odours slightly increased the number of cells coexpressing ER, and odour-induced Fos in the posterodorsal medial amygdala. Although, these results do not support the hypothesis that the effects of odours are mediated by a PR-dependent mechanism, they suggest that integration of male odours and hormonal cues may occur in ER,-containing cells in the posterodorsal medial amygdala. [source] Ethanol-Induced Increase of Agouti-Related Protein (AgRP) Immunoreactivity in the Arcuate Nucleus of the Hypothalamus of C57BL/6J, but not 129/SvJ, Inbred MiceALCOHOLISM, Issue 4 2010Inmaculada Cubero Background:, The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor, pro-opiomelanocortin (POMC). Previous research has shown that MC receptor (MCR) agonists reduce, and MCR antagonists increase, ethanol consumption in rats and mice. Consistently, genetic deletion of the endogenous MCR antagonist, agouti-related protein (AgRP), causes reductions of ethanol-reinforced lever pressing and binge-like ethanol drinking in C57BL/6J mice. Ethanol also has direct effects on the central MC system, as chronic exposure to an ethanol-containing diet causes significant reductions of ,-melanocyte stimulating hormone (,-MSH) immunoreactivity in specific brain regions of Sprague-Dawley rats. Together, these observations suggest that the central MC system modulates neurobiological responses to ethanol. To further characterize the role of the MC system in responses to ethanol, here we compared AgRP and ,-MSH immunoreactivity in response to an acute injection of saline or ethanol between high ethanol drinking C57BL/6J mice and moderate ethanol drinking 129/SvJ mice. Methods:, Mice received an intraperitoneal (i.p.) injection of ethanol (1.5 g/kg or 3.5 g/kg; mixed in 0.9% saline) or an equivolume of 0.9% saline. Two hours after injection, animals were sacrificed and their brains were processed for AgRP and ,-MSH immunoreactivity. Results:, Results indicated that acute ethanol administration triggered a dose-dependent increase in AgRP immunoreactivity in the arcuate (ARC) of C57BL/6J mice, an effect that was not evident in the 129/SvJ strain. Although acute administration of ethanol did not influence ,-MSH immunoreactivity, C57BL/6J mice had significantly greater overall ,-MSH immunoreactivity in the ARC, dorsomedial, and lateral regions of the hypothalamus relative to the 129/SvJ strain. In contrast, C57BL/6J mice displayed significantly lower ,-MSH immunoreactivity in the medial amygdala. Conclusions:, The results show that acute ethanol exposure has direct effects on endogenous AgRP activity in ethanol preferring C57BL/6J mice. It is suggested that ethanol-induced increases in AgRP may be part of a positive feedback system that stimulates excessive binge-like ethanol drinking in C57BL/6J mice. Inherent differences in ,-MSH immunoreactivity may contribute to differences in neurobiological responses to ethanol that are characteristically observed between the C57BL/6J and 129/SvJ inbred strains of mice. [source] |