Mean Trait Values (mean + trait_value)

Distribution by Scientific Domains


Selected Abstracts


MULTILOCUS GENETICS AND THE COEVOLUTION OF QUANTITATIVE TRAITS

EVOLUTION, Issue 7 2006
Michael Kopp
Abstract We develop and analyze an explicit multilocus genetic model of coevolution. We assume that interactions between two species (mutualists, competitors, or victim and exploiter) are mediated by a pair of additive quantitative traits that are also subject to direct stabilizing selection toward intermediate optima. Using a weak-selection approximation, we derive analytical results for a symmetric case with equal locus effects and no mutation, and we complement these results by numerical simulations of more general cases. We show that mutualistic and competitive interactions always result in coevolution toward a stable equilibrium with no more than one polymorphic locus per species. Victimexploiter interactions can lead to different dynamic regimes including evolution toward stable equilibria, cycles, and chaos. At equilibrium, the victim is often characterized by a very large genetic variance, whereas the exploiter is polymorphic in no more than one locus. Compared to related one-locus or quantitative genetic models, the multilocus model exhibits two major new properties. First, the equilibrium structure is considerably more complex. We derive detailed conditions for the existence and stability of various classes of equilibria and demonstrate the possibility of multiple simultaneously stable states. Second, the genetic variances change dynamically, which in turn significantly affects the dynamics of the mean trait values. In particular, the dynamics tend to be destabilized by an increase in the number of loci. [source]


FROM MICRO- TO MACROEVOLUTION THROUGH QUANTITATIVE GENETIC VARIATION: POSITIVE EVIDENCE FROM FIELD CRICKETS

EVOLUTION, Issue 10 2004
Mattieu Bégin
Abstract . -Quantitative genetics has been introduced to evolutionary biologists with the suggestion that microevolution could be directly linked to macroevolutionary patterns using, among other parameters, the additive genetic variance/ covariance matrix (G) which is a statistical representation of genetic constraints to evolution. However, little is known concerning the rate and pattern of evolution of G in nature, and it is uncertain whether the constraining effect of G is important over evolutionary time scales. To address these issues, seven species of field crickets from the genera Gryllus and Teleogryllus were reared in the laboratory, and quantitative genetic parameters for morphological traits were estimated from each of them using a nested full-sibling family design. We used three statistical approaches (T method, Flury hierarchy, and Mantel test) to compare G matrices or genetic correlation matrices in a phylogenetic framework. Results showed that G matrices were generally similar across species, with occasional differences between some species. We suggest that G has evolved at a low rate, a conclusion strengthened by the consideration that part of the observed across-species variation in G can be explained by the effect of a genotype by environment interaction. The observed pattern of G matrix variation between species could not be predicted by either morphological trait values or phylogeny. The constraint hypothesis was tested by comparing the multivariate orientation of the reconstructed ancestral G matrix to the orientation of the across-species divergence matrix (D matrix, based on mean trait values). The D matrix mainly revealed divergence in size and, to a much smaller extent, in a shape component related to the ovipositor length. This pattern of species divergence was found to be predictable from the ancestral G matrix in agreement with the expectation of the constraint hypothesis. Overall, these results suggest that the G matrix seems to have an influence on species divergence, and that macroevolution can be predicted, at least qualitatively, from quantitative genetic theory. Alternative explanations are discussed. [source]


Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest

FUNCTIONAL ECOLOGY, Issue 1 2010
Catherine M. Hulshof
Summary 1.,Patterns of species co-existence and species diversity in plant communities remain an important research area despite over a century of intensive scrutiny. To provide mechanistic insight into the rules governing plant species co-existence and diversity, plant community ecologists are increasingly quantifying functional trait values for the species found in a wide range of communities. 2.,Despite the promise of a quantitative functional trait approach to plant community ecology, we suggest that, along with examining trait variation across species, an assessment of trait variation within species should also be a key component of a trait-based approach to community ecology. Variability within and between individuals and populations is likely widespread due to plastic responses to highly localized abiotic and biotic interactions. 3.,In this study, we quantify leaf trait variation within and across ten co-existing tree species in a dry tropical forest in Costa Rica to ask: (i) whether the majority of trait variation is located between species, within species, within individuals or within the leaves themselves; (ii) whether trait values collected using standardized methods correlate with those collected using unstandardized methods; and (iii) to what extent can we differentiate plant species on the basis of their traits? 4.,We find that the majority of variation in traits was often explained by between species differences; however, between leaflet trait variation was very high for compound-leaved species. We also show that many species are difficult to reliably differentiate on the basis of functional traits even when sampling many individuals. 5.,We suggest an ideal sample size of at least 10, and ideally 20, individuals be used when calculating mean trait values for individual species for entire communities, though even at large sample sizes, it remains unclear if community level trait values will allow comparisons on a larger geographic scale or if species traits are generally similar across scales. It will thus be critical to account for intraspecific variation by comparing species mean trait values across space in multiple microclimatic environments within local communities and along environmental gradients. Further, quantifying trait variability due to plasticity and inheritance will provide a better understanding of the underlying patterns and drivers of trait variation as well as the application of functional traits in outlining mechanisms of species co-existence. [source]


The evolution of trade-offs: geographic variation in call duration and flight ability in the sand cricket, Gryllus firmus

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2003
D. A. Roff
Abstract Quantitative genetic theory assumes that trade-offs are best represented by bivariate normal distributions. This theory predicts that selection will shift the trade-off function itself and not just move the mean trait values along a fixed trade-off line, as is generally assumed in optimality models. As a consequence, quantitative genetic theory predicts that the trade-off function will vary among populations in which at least one of the component traits itself varies. This prediction is tested using the trade-off between call duration and flight capability, as indexed by the mass of the dorsolateral flight muscles, in the macropterous morph of the sand cricket. We use four different populations of crickets that vary in the proportion of macropterous males (Lab = 33%, Florida = 29%, Bermuda = 72%, South Carolina = 80%). We find, as predicted, that there is significant variation in the intercept of the trade-off function but not the slope, supporting the hypothesis that trade-off functions are better represented as bivariate normal distributions rather than single lines. We also test the prediction from a quantitative genetical model of the evolution of wing dimorphism that the mean call duration of macropterous males will increase with the percentage of macropterous males in the population. This prediction is also supported. Finally, we estimate the probability of a macropterous male attracting a female, P, as a function of the relative time spent calling (P = time spent calling by macropterous male/(total time spent calling by both micropterous and macropterous male). We find that in the Lab and Florida populations the probability of a female selecting the macropterous male is equal to P, indicating that preference is due simply to relative call duration. But in the Bermuda and South Carolina populations the probability of a female selecting a macropterous male is less than P, indicating a preference for the micropterous male even after differences in call duration are accounted for. [source]