Mean EC50 Values (mean + ec50_value)

Distribution by Scientific Domains


Selected Abstracts


Polycyclic aromatic hydrocarbons as inducers of cytochrome P4501A enzyme activity in the rainbow trout liver cell line, RTL-W1, and in primary cultures of rainbow trout hepatocytes

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2001
Anja Behrens
Abstract In order to investigate cell-specific differences in the response of in vitro models to environmental toxicants, we compared the capacity of nine polycyclic aromatic hydrocarbons (PAHs) to induce cytochrome P4501A (CYP1A) in primary rainbow trout (Oncorhynchus mykiss) hepatocytes and a rainbow trout liver cell line, RTL-W1. Induction of CYP1A was estimated from the catalytic activity of 7-ethoxyresorufin- O -deethylase (EROD) and compared by median effective concentration (EC50) values, induction spans, and benzo[a]pyrene induction equivalency factors for inducing PAHs. The influence of culture conditions was investigated with respect to the presence or absence of serum and varying exposure times. Both in vitro systems lead to an identical classification of the PAHs in noninducing (anthracene, fluoranthene, phenanthrene, and pyrene) and inducing compounds with a similar ranking of inducing PAHs. Mean EC50 values in RTL-W1 cells were, respectively, 343 and 266 nM for benzo[a]anthracene, 57 and 92 nM for BaP, 134 and 283 nM for benzo[b]fluoranthene, 455 and 270 nM for chrysene, and 98 and 116 nM for 3-methylcholanthrene. Compared to primary hepatocytes, the RTL-W1 cell line was more sensitive in its EROD response to the presence or absence of serum and to the increase in exposure time, which led to higher EC50 values. [source]


Mechanisms involved in the relaxant action of the ethanolic extract of propolis in the guinea-pig trachea in-vitro

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2002
Niraldo Paulino
This study examines the mechanisms by which the standardised ethanolic extract of propolis induces relaxation of the guinea-pig trachea in-vitro. In guinea-pig trachea with or without epithelium and contracted by histamine, the propolis extract caused reproducible and graded relaxation, with a mean EC50 value of 3.8 or 10.5 ,g mL,1 and Emax of 100%, respectively. The propolis extract-induced relaxation was markedly reduced (26 ± 9 and 96 ± 3%) when guinea-pig tracheas were exposed to Krebs solution containing elevated K+ in the medium (40 or 80 mM). Pre-incubation of guinea-pig tracheas with tetraethylamonium (100 mM) or with 4-aminopyridine (10 mM) reduced the propolis extract-induced relaxation by 31±10% and 28 ± 2%. Likewise, apamin (0.1 ,M), charybdotoxin (0.1 ,M) or iberiotoxin (0.1 ,M) caused marked inhibition of propolis extract-mediated relaxation in guinea-pig trachea (percentage of inhibition: 65 ± 3%, 60 ± 5% and 65 ± 9%, respectively). Also, glibenclamide (1 ,M) inhibited the relaxant response caused by the propolis extract by 57 ± 4%. ,-Conotoxin GIVA (0.1 ,M) or capsaicin (1 ,M) produced small but significant inhibition (30 ± 5% or 47 ± 7%, respectively) of the propolis extract-induced relaxation. The vasoactive intestinal peptide (VIP) antagonist D- P -CI-Phe6, Leu17[VIP] porcine (0.1 ,M) inhibited relaxation by 55 ± 5%, while propranolol (1 ,M) induced a parallel rightward displacement (about 20 fold) of the propolis extract concentration-response curve. Finally, the propolis extract-induced relaxation was inhibited by the nitric oxide synthase inhibitor L-NG -nitroarginine (L-NOArg, 100 ,M) (48 ± 6%), and by the soluble guanylate cyclase inhibitor methylene blue (10 ,M) (37 ± 6%), while the more selective soluble guanylate cyclase inhibitor 1H -[1,2,4]oxadiazolol[4,3-a]quinoxalin-1-one (ODQ, 1 ,M) produced only a parallel (about 3 fold) rightward displacement of the propolis extract concentration-response curve. Collectively, these results support the notion that the propolis extract-mediated relaxation in the guinea-pig trachea involves the release of nitric oxide, probably from sensory neurons, besides the activation of soluble guanylate cyclase and activation of Ca2+ - and ATP-sensitive K+channels. Furthermore, the stimulation of ,2 -adrenergic and VIP receptors also seems to account for its relaxant action. [source]


Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid

PLANT PATHOLOGY, Issue 4 2007
C. Q. Zhang
Between 2004 and 2006, 228 isolates of Botrytis cinerea from two regions in China were characterized for baseline sensitivity to boscalid, a new active ingredient that interferes with succinate ubiquinone reductase in the electron transport chain. The isolates showed similar sensitivity in different years and regions. Baseline sensitivities were distributed as unimodal curves with mean EC50 values of 1·07 (± 0·11) and 0·42 (± 0·05) mg L,1 for inhibition of mycelial growth and conidial germination, respectively. Laboratory studies were conducted to evaluate the risk of development of resistance to boscalid. Boscalid-resistant mutants were obtained by UV-treatment at lower frequencies and with smaller resistance factors than pyrimethanil-resistant mutants. All boscalid-resistant mutants were also significantly more sensitive to Qo inhibitors than their wild-type parents and showed reduced sporulation in vitro and pathogenicity on aubergine leaves. The results suggested that the risk of resistance developing for boscalid was lower than for pyrimethanil. However, as B. cinerea is a high-risk pathogen, appropriate precautions against resistance development should be taken. Synergism between the activity of boscalid and that of kresoxim-methyl was observed. [source]


In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae

PLANT PATHOLOGY, Issue 2 2007
A. Sellam
In vitro assays investigated the responses of Alternaria brassicicola and A. brassicae isolates towards two crucifer phytoalexins and two isothiocyanates (ITC) by evaluating their potential toxic effects on different fungal growth parameters. Although variable responses towards each compound was observed within the species A. brassicicola, the results obtained confirmed the antifungal effects of camalexin, brassinin, allyl- (AlITC) and benzyl- (BzITC) isothiocyanates, at different developmental stages of both Alternaria species. Irrespective of the tested isolate, the phytoalexin camalexin exhibited the greater inhibitory effect with mean EC50 values ranging from 34 µm (germ-tube elongation) to 183 µm (mycelial growth). Germ-tube elongation was more sensitive compared to conidial germination and mycelial growth, with mean EC50 values of the former of 81 µm, 520 µm and 870 µm for brassinin, BzITC and AlITC, respectively. [source]