Mean Dispersal Distance (mean + dispersal_distance)

Distribution by Scientific Domains


Selected Abstracts


Variation in pollen dispersal between years with different pollination conditions in a tropical emergent tree

MOLECULAR ECOLOGY, Issue 11 2004
T. KENTA
Abstract We examined differences in pollen dispersal efficiency between 2 years in terms of both spatial dispersal range and genetic relatedness of pollen in a tropical emergent tree, Dipterocarpus tempehes. The species was pollinated by the giant honeybee (Apis dorsata) in a year of intensive community-level mass-flowering or general flowering (1996), but by several species of moths in a year of less-intensive general flowering (1998). We carried out paternity analysis based on six DNA microsatellite markers on a total of 277 mature trees forming four spatially distinct subpopulations in a 70 ha area, and 147 and 188 2-year-old seedlings originating from seeds produced in 1996 and 1998 (cohorts 96 and 98, respectively). Outcrossing rates (0.93 and 0.96 for cohorts 96 and 98, respectively) did not differ between years. Mean dispersal distances (222 and 192 m) were not significantly different between the 2 years but marginally more biased to long distance in 1996. The mean relatedness among cross-pollinated seedlings sharing the same mothers in cohort 96 was lower than that in cohort 98. This can be attributed to the two facts that the proportion of intersubpopulations pollen flow among cross-pollination events was marginally higher in cohort 96 (44%) than in cohort 98 (33%), and that mature trees within the same subpopulations are genetically more related to each other than those between different subpopulations. We conclude that D. tempehes maintained effective pollen dispersal in terms of outcrossing rate and pollen dispersal distance in spite of the large difference in foraging characteristics between two types of pollinators. In terms of pollen relatedness, however, a slight difference was suggested between years in the level of biparental inbreeding. [source]


Dispersal of mass-reared sterile, laboratory-domesticated and wild male Queensland fruit flies

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2010
C. Weldon
Abstract Queensland fruit flies, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (,Q-flies') were released as sexually immature adults from a point within an orchard. Marked male Q-flies were recaptured in the trap furthest from the release point (1087 m) by 2 weeks after release, although 98.25 ± 1.04% of recaptured males were trapped <500 m from the release point. Comparison of gamma-irradiated (sterile), laboratory-adapted and wild male Q-flies indicated that dispersal distance was not significantly affected by fly type. There was no significant correlation between temperature and mean dispersal distance, but total recaptures were significantly negatively correlated with increasing daily maximum, minimum and average temperature. [source]


Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion

JOURNAL OF BIOGEOGRAPHY, Issue 11 2005
J. Julio Camarero
Abstract Aim, To infer future changes in the distribution of isolated relict tree populations at the limit of a species' geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location, A relict Pinus uncinata population located at the south-western limit of distribution of the species in the Iberian System of north-eastern Spain. Methods,Pinus uncinata individuals were mapped within a 50 × 40-m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed-release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point-pattern (Ripley's K) and surface-pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results, Pine seedlings appeared aggregated in 6-m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north-eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small-scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long-range expansion might be caused by less frequent medium-distance dispersal events due to the dominant north-westerly winds. Main conclusions, To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming. [source]


Interspecific variation in primary seed dispersal in a tropical forest

JOURNAL OF ECOLOGY, Issue 4 2008
Helene C. Muller-Landau
Summary 1We investigated the relationships of seed size, dispersal mode and other species characteristics to interspecific variation in mean primary seed dispersal distances, mean annual seed production per unit basal area, and clumping of seed deposition among 41 tropical tree species on Barro Colorado Island, Panama. 2A hierarchical Bayesian model incorporating interannual variation in seed production was used to estimate seed dispersal, seed production, and clumping of seed rain for each species from 19 years of data for 188 seed traps on a 50-ha plot in which all adult trees were censused every 5 years. 3Seed dispersal was modelled as a two-dimensional Student's T distribution with the degrees of freedom parameter fixed at 3, interannual variation in seed production per basal area was modelled as a lognormal, and the clumping of seed rain around its expected value was modelled as a negative binomial distribution. 4There was wide variation in seed dispersal distances among species sharing the same mode of seed dispersal. Seed dispersal mode did not explain significant variation in seed dispersal distances, but did explain significant variation in clumping: animal-dispersed species showed higher clumping of seed deposition. 5Among nine wind-dispersed species, the combination of diaspore terminal velocity, tree height and wind speed in the season of peak dispersal explained 40% of variation in dispersal distances. Among 31 animal-dispersed species, 20% of interspecific variation in dispersal distances was explained by seed mass (a negative effect) and tree height (a positive effect). 6Among all species, seed mass, tree height and dispersal syndrome explained 28% of the variation in mean dispersal distance and seed mass alone explained 45% of the variation in estimated seed production per basal area. 7Synthesis. There is wide variation in patterns of primary seed rain among tropical tree species. Substantial proportions of interspecific variation in seed production, seed dispersal distances, and clumping of seed deposition are explained by relatively easily measured plant traits, especially dispersal mode, seed mass, and tree height. This provides hope for trait-based generalization and modelling of seed dispersal in tropical forests. [source]


Ecological dynamics of extinct species in empty habitat networks.

OIKOS, Issue 3 2003

This paper explores the relative effects of host plant dynamics and butterfly-related parameters on butterfly persistence. It considers an empty habitat network where a rare butterfly (Cupido minimus) became extinct in 1939 in part of its historical range in north Wales, UK. Surviving populations of the butterfly in southern Britain were visited to assess use of its host plant (Anthyllis vulneraria) in order to calibrate habitat suitability and carrying capacity in the empty network in north Wales. These data were used to deduce that only a portion (,19%) of the host plant network from north Wales was likely to be highly suitable for oviposition. Nonetheless, roughly 65,460 eggs (3273 adult equivalents) could be expected to be laid in north Wales, were the empty network to be populated at the same levels as observed on comparable plants in surviving populations elsewhere. Simulated metapopulations of C. minimus in the empty network revealed that time to extinction and patch occupancy were significantly influenced by carrying capacity, butterfly mean dispersal distance and environmental stochasticity, although for most reasonable parameter values, the model system persisted. Simulation outputs differed greatly when host plant dynamics was incorporated into the modelled butterfly dynamics. Cupido minimus usually went extinct when host plant were at low densities. In these simulations host plant dynamics appeared to be the most important determinant of the butterfly's regional extirpation. Modelling the outcome of a reintroduction programme to C. minimus variation at high quality locations, revealed that 65% of systems survived at least 100 years. Given the current amount of resources of the north Wales landscape, the persistence of C. minimus under a realistic reintroduction programme has a good chance of being successful, if carried out in conjunction with a host plant management programme. [source]